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Abstract 

Keloids are diseases of the skin exhibiting features of scars as well as tumours. They are 

especially characterized by their steady spreading beyond the borders of the original wound. 

A wide range of studies focusing on the different cell types present in keloids and their 

potential contribution to keloid formation provided useful insights into the nature of this 

disease. However, despite many years of research, the pathologic forces driving keloid 

formation still remain largely undiscovered. In keloids, single cell RNA sequencing revealed a 

significant increase of a so far neglected cell type, the Schwann cells. Schwann cells are a 

specialized type of peripheral glia cells ensheathing nerve axons to support their function and 

to ensure fast stimulus conduction. In the healthy skin, Schwann cells are exclusively 

identified in contact with tissue-pervading neurons, whereas keloidal Schwann cells exhibit a 

unique expression pattern and spread through the whole dermal layer without axon 

attachment. Striking similarities of this keloid-specific Schwann cells with repair Schwann 

cells, an activated Schwann cell subtype involved in the neuronal regeneration processes 

upon injury, were observed. In contrast to these repair Schwann cells, keloidal Schwann cells 

showed a strong contribution to the formation of the extracellular matrix. Numerous matrix-

associated genes were identified to be upregulated in keloidal Schwann cells and specific 

factors, such as insulin-like growth factor binding protein 5 (IGFBP5) and cellular 

communication network factor 3 (CCN3), were exclusively detected in keloidal Schwann cells 

suggesting their contribution to the pathologic features of keloids. As Schwann cells have not 

been associated with keloid formation so far, a comparison of the keloidal Schwann cells with 

Schwann cells from the cutaneous neurofibroma type 1, a skin disease driven by this cell 

type, was performed. This joint analysis pointed to distinct pathologic roots and further 

uncovered the lack of pro-inflammatory factors in keloidal cells. A potential interaction of 

Schwann cells and macrophages in keloids was identified, suggesting the attraction and M2 

polarization of macrophages by keloidal Schwann cells and the enforcement of 

dedifferentiation and maintenance of in an activated state of Schwann cells by keloidal 

macrophages. In-depth analysis of independent single cell datasets verified the tissue-

specific presence of keloidal Schwann cells and paved the way to define a characteristic 

transcriptional pattern of twenty-one genes for the identification of this special Schwann cell 

type in other fibrotic tissues. Together, a novel pro-fibrotic Schwann cell type persisting in 

keloids was identified, which might be an interesting new target for therapeutic interventions 

to prevent or reduce keloid formation in the future.  
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Zusammenfassung 

Keloide sind Erkrankungen der Haut, die sowohl Narben- als auch Tumormerkmale 

aufweisen. Sie sind charakterisiert durch ihre stetige Ausbreitung über die Grenzen der 

ursprünglichen Wunde. Eine breite Palette von Studien, die sich auf die verschiedenen 

Zelltypen in Keloiden und ihren möglichen Beitrag zur Keloidbildung konzentrierten, lieferte 

nützliche Einblicke in die Natur dieser Krankheit. Trotz langjähriger Forschung sind die 

pathologischen Kräfte, welche die Keloidbildung antreiben, noch immer weitgehend 

unentdeckt. Bei Keloiden zeigte die Einzelzell-RNA-Sequenzierung eine signifikante 

Zunahme eines bisher vernachlässigten Zelltyps, der Schwann-Zellen. Schwann-Zellen sind 

eine spezialisierte Art von peripheren Gliazellen, die Nervenaxone umhüllen, um deren 

Funktion zu unterstützen und eine schnelle Reizleitung zu gewährleisten. In der gesunden 

Haut werden Schwann-Zellen ausschließlich im Kontakt mit gewebedurchdringenden 

Neuronen identifiziert, während keloidale Schwann-Zellen ein einzigartiges 

Expressionsmuster aufweisen und sich ohne Axonanhaftung durch die gesamte dermale 

Hautschicht ausbreiten. Es wurde eine auffällige Ähnlichkeit dieser Keloid-spezifischen 

Schwann-Zellen mit Reparatur-Schwann-Zellen, einem aktivierten Schwann-Zell-Subtyp, der 

an neuronalen Regenerationsprozessen nach Verletzungen beteiligt ist, beobachtet. Im 

Gegensatz zu diesen Reparatur-Schwann-Zellen zeigten keloidale Schwann-Zellen einen 

starken Beitrag zur Bildung der extrazellulären Matrix. Eine Hochregulation zahlreiche 

matrixassoziierte Gene in keloidalen Schwann-Zellen wurde entdeckt.Zusätzlich wurden 

spezifische Faktoren wie insulin-like growth factor binding protein 5 (IGFBP5) und cellular 

communication network factor 3 (CCN3) ausschließlich in keloidalen Schwann-Zellen 

nachgewiesen, was auf ihren Beitrag zu den pathologischen Merkmalen von Keloiden 

hindeutet. Da Schwann-Zellen bisher nicht mit der Ausbildung von Keloiden in Verbindung 

gebracht wurden, wurde ein Vergleich der keloidalen Schwann-Zellen mit Schwann-Zellen 

aus dem kutanen Neurofibrom Typ 1, einer durch diesen Zelltyp verursachten 

Hauterkrankung, durchgeführt. Diese gemeinsame Analyse wies auf unterschiedliche 

pathologische Wurzeln hin und deckte das Fehlen entzündungsfördernder Faktoren in 

Keloidzellen auf. Eine potenzielle Wechselwirkung von Schwann-Zellen und Makrophagen in 

Keloiden wurde identifiziert, was auf die Anziehung und M2-Polarisierung von Makrophagen 

durch keloidale Schwann-Zellen und die Erzwingung der Dedifferenzierung und 

Aufrechterhaltung eines aktivierten Zustands von Schwann-Zellen durch keloidale 

Makrophagen hindeutet. Eine eingehende Analyse unabhängiger Einzelzelldatensätze 

verifizierte das gewebespezifische Vorhandensein von keloidalen Schwann-Zellen und 

ebnete den Weg zur Definition eines charakteristischen Transkriptionsmusters von 

einundzwanzig Genen zur Identifizierung dieses speziellen Schwann-Zelltyps in anderen 

fibrotischen Geweben. Zusammengefasst wurde ein neuartiger pro-fibrotischen Schwann-
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Zelltyp identifiziert, welcher in Keloiden persistiert und ein interessantes neues Ziel für 

therapeutische Interventionen zur Reduktion oder Prävention von Keloiden sein könnte.  
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1 CHAPTER ONE: INTRODUCTION 

1.1 The human skin and its functions 

Naturally, an organism living on dry land requires a spatial demarcation from its environment, 

an integument (Madison, 2003). In case of humans and animals this purpose is served by 

the skin. An average adult human body is covered by about 2 square metres of skin and 

comes along with a varying thickness mostly around 2 millimetres (Mosteller, 1987; Wei et al, 

2017). The skin is often termed as the largest organ of the human body, however, from the 

surface perspective it ranks third after the lung (50 square metres) and the gut (30 square 

metres) (Hasleton, 1972; Helander & Fändriks, 2014). In terms of weight the musculoskeletal 

system, which has to be considered as an organ in this context, is the heaviest organ in the 

human body before the skin (Sontheimer, 2014). Beside its task as physical barrier for the 

body, the skin comprises multiple further important functions in different vital areas. It is, for 

example used as storage area for an oversupply of lipids (Wajchenberg, 2000). The skin 

controls the body temperature through vasodilatation and vasoconstriction as well as by the 

production of sweat (Romanovsky, 2014). It is also capable of absorbing specific substances, 

this skin feature is utilized in medical fields for the application of therapeutics (Leppert et al, 

2018; Singh Malik et al, 2016). The human integument provides a natural barrier to protect 

the inside of the body from external harm. This implicates not only physical and mechanical 

damage, but also pathogens and ultraviolet radiation (D'Orazio et al, 2013; Lin & Fisher, 

2007; Madison, 2003; Nguyen & Soulika, 2019). Furthermore, the skin as a major sensory 

organ of our environment. Tactile perception, pain, pressure, temperature, and elongation 

are detected by different specialized receptors spread through the skin (Zimmerman et al, 

2014). In addition, these sensations also alert the individual to prevent from external harm by 

temperature or mechanical stress. The skin further serves as an immunological organ to 

protect the organism from external pathogens through immune cells resident in the skin but 

also by recruiting immune cells to the required skin site (Kabashima et al, 2019). 

The human skin is composed of an epidermal, a dermal and a subcutaneous layer. The 

epidermal layer, as outermost layer, can be divided into four to five layers: stratum corneum, 

stratum lucidum (solely on palms and soles), stratum granulosum, stratum spinosum and 

stratum basale. The cellular landscape of the epidermis consists of keratinocytes, Merkel 

cells, Melanocytes and Langerhans cells, whereas keratinocytes make up the major cell type 

in the epidermis (95 %). Basal, non-differentiated keratinocytes are located in the 

eponymous stratum basale (Hsu et al, 2014). They continually proliferate and the resulting 

new keratinocytes move towards the body surface. This migration comes along with cellular 

differentiation and morphologic transformation called keratinization (Smack et al, 1994). The 
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keratinocytes are connected to each other by desomosomes, get flattened, release their 

lipids to form a lipid barrier and finally differentiate into anucleated corneocytes (Fuchs, 

1990). The stratum corneum is the outermost layer of the epidermis and consists of multiple 

corneocyte layers. The majority of the barrier function of the skin is provided by the stratum 

corneum (Murphrey et al, 2022). Melanocytes are pigmented cells derived from the neural 

crest that are responsible for the production of melanin which in turn creates the skin color, 

supports thermoregulation and protects against detrimental ultraviolet radiation (Adameyko 

et al, 2009). Merkel cells are mechanoreceptors detecting gentle touch sensations. Both cell 

types, Melanocytes and Merkel cells are located in the stratum basale (Lin & Fisher, 2007; 

Zimmerman et al., 2014). Langerhans cells are primarily located in the stratum spinosum. 

They are specialized tissue-resident macrophages and have important functions in immune 

homeostasis of the skin to prevent infections (Deckers et al, 2018).  

The dermal layer of the skin can be divided into a papillary and a reticular area. The papillary 

dermis starts directly beneath the basal lamina of the epidermis. It forms multiple protrusions 

into the epidermal layer and includes many capillaries and the subepidermal nerve plexus 

(Reinisch & Tschachler, 2012; Shirshin et al, 2017). The reticular part is much thicker and 

consists to a large extent of extracellular matrix (ECM), such as collagen, proteoglycans, and 

elastic fibres (Krieg & Aumailley, 2011; Losquadro, 2017). However, the cellular density and 

the proteoglycan content is higher in the papillary dermis (Mine et al, 2008; Smith & Melrose, 

2015). Fibroblasts form, together with myofibroblasts, mast cells, lymphocytes, monocytes 

and macrophages, the cellular part in the dermis (Nguyen & Soulika, 2019). Hair follicles, 

sebaceous glands, sweat glands as well as various nerve receptors, such as Meissner 

corpuscle, Pacinian corpuscle and Ruffini endings, are spread through the dermis 

(Losquadro, 2017; Zimmerman et al., 2014). Vascular-nerve bundles pervade the dermis to 

supply nutrients and drain waste substances (Losquadro, 2017; Zimmerman et al., 2014). 

The subcutaneous layer, also known as hypodermis, is used as energy storage for surplus 

lipids, which simultaneously exerts a heat-insulating effect. The major cell types are 

fibrocytes, adipocytes as well as macrophages. It consists of solely loose connective tissue, 

bigger vessels and nerves, and forms a gliding layer to protect the skin (Driskell et al, 2014; 

Geyer et al, 2014; Wong et al, 2016).  
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Figure 1: Anatomy of the human skin 

 

1.2 Wound healing 

A wound can be defined as a disruption of normal tissue that comes along with a loss of 

organ functions (Lazarus et al, 1994). Two major types of wounds can be distinguished 

closed/inner wounds and outer/open wounds (Reinke & Sorg, 2012). Inner wounds concern 

injuries of inner organs, whereas open wounds involve damages of the integument (Reinke & 

Sorg, 2012). Several cells as well as chemotactic factors and growth factors are involved in 

the complex process of wound healing in the skin. Ideally, the skin is restored in its previous 

state, however this regeneration process only occurs in fetal skin or mucosa (Szpaderska et 

al, 2003; Wilgus, 2007). The wound healing of the adult skin can be divided in three up to five 

partly overlapping phases.  
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Figure 2: Stages of Wound Healing 

 

1.2.1 The haemostasis phase 

The first and initial phase is the haemostasis phase. Haemostasis starts within seconds 

following damage and lasts for some hours (Ud-Din & Bayat, 2014). The vessel damage 

induced by an external trauma of the skin causes an abrupt loss of blood and lymph fluid 

through the wound (Strodtbeck, 2001). The vascular integrity needs to be re-established, but 

in the beginning it also contributes to the healing process by cleansing potential pathogens 

and antigens from the wound (Strodtbeck, 2001). To prevent the body from severe blood loss 

and thereof resulting shock situations, multiple actions start at the same time. Trigger for this 

activation is the non-physiological contact of blood cells with dermal tissue due to the break 

of boundaries (Mackman et al, 2007). Within seconds, platelets induce vasoconstriction to 

ensure haemostasis (Martin, 1997). Due to the vasoconstriction, the early wound site is 

characterized by a low level of oxygen and a decrease of the pH for about 4 days. This state 

comes along with evident pain behaviour induced by secreted enzymes and mediators (Hunt 

& Hopf, 1997; Woo et al, 2004). Damaged cells further release clotting factors to activate the 

extrinsic coagulation cascade (Mackman et al., 2007). The contact of platelets  with 

extracellular collagen on the other hand, starts the intrinsic aggregation system (Mackman et 

al., 2007). Platelets secrete thrombin, a serine protease that supports the aggregation 
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process and transforms the plasma fibrinogen into an insoluble fibrin clot (He et al, 2010). 

The generated haemostatic clot forms a scaffold that acts as temporal protection and 

additionally fills the bare inner tissue with a provisional matrix for incoming cells (Martin, 

1997). It consists of cells (e.g., erythrocytes, platelets) and proteins (fibrin, fibronectin, 

thrombospondin, vitronectin, and others) (Martin, 1997). After 5 to 10 minutes, histamine, 

thrombin and other factors release the constriction of the vessels and induce a vasodilatation 

that peaks around 10 to 15 minutes later (Mahdavian Delavary et al, 2011; Reinke & Sorg, 

2012). This change is also the reason for the visible local redness and potential oedema 

formation at the wound site (Reinke & Sorg, 2012). Beside thrombin, platelets also release 

several other cytokines and growth factors via granules, such as C-C Motif Chemokine 

Ligand 5 (CCL5), transforming growth factor beta (TGF-ß), vascular endothelial growth factor 

(VEGF), platelet derived growth factor (PDGF) (Mahdavian Delavary et al., 2011). The 

coagulation clot acts hereby as a kind of cytokine and growth factor reservoir (Martin, 1997). 

As it takes some time to establish the required cells and factors for proper wound healing in 

the wound environment, the haemostasis phase is also known as “Lag”-phase. (Robson et 

al, 2001). The released thrombin stimulates cells such as endothelial cells and peripheral 

blood mononuclear cells to secret pro-inflammatory factors as C-C Motif Chemokine Ligand 

2 (CCL2, alternatively MCP-1), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-

8), tumour necrosis factor alpha (TNF-α), or interferon gamma (IFN-γ) (Mahdavian Delavary 

et al., 2011; Marin et al, 2001). The secreted cytokines induce the attraction of cells like 

keratinocytes, fibroblasts, endothelial cells and support the transendothelial migration of 

neutrophils and monocytes to the wound side which is important for the start of the 

inflammation and proliferation phases (Morton & Phillips, 2016).  

1.2.2 The inflammatory phase 

The inflammation phase starts already during the haemostasis phase within hours after injury 

and lasts for at least 2 weeks (Shah et al, 2012). It can be divided in two cellular parts, the 

neutrophil and the monocyte response. Released histamine induces an increased porosity of 

the dilated vessels, which additionally supports the attraction and migration of leukocytes 

(Komi et al, 2020). Circulating neutrophils get attracted and invade the wound area (Singer & 

Clark, 1999). They are present for a few days and perform crucial tasks in the early healing 

process (Eming et al, 2007). They defeat microorganisms by phagocytosis or by secretion of 

proteinases (neutrophil elastase, cathepsin G, urokinase-type plasminogen activator) or 

antimicrobial substances and remove necrotic and damaged tissue by the release of 

enzymes as collagenases and others (Eming et al., 2007). Exerted neutrophils are 

phagocytosed by macrophages or pass into the eschar (Meszaros et al, 1999; Thomas et al, 

1999). Neutrophils produce multiple pro-inflammatory factors as TNF-α, interleukin 1 alpha 

(IL-1α), IL-1β, IL-6 and CCL2 to recruit further neutrophils, monocytes, keratinocytes, and 
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fibroblasts and additionally to differentiate monocytes (Hübner et al, 1996; Werner & Grose, 

2003). Three days after wounding, macrophages are the predominate cell type at the wound 

site and support the healing process by phagocytosis of foreign bodies, organisms and dead 

neutrophils (Mahdavian Delavary et al., 2011). In response to the increased number of 

cytokines and other factors (CCL2, C-C Motif Chemokine Ligand 3 [CCL3], transforming 

growth factor alpha (TGF-α), fibronectin, elastin, p75 neurotrophin receptor [NGFR]) in the 

wound area, circulating monocytes get in contact with the vessel wall and subsequently, the 

adhesion cascade is activated monocytes interact with endothelial cells by their glycoprotein 

ligands (Mahdavian Delavary et al., 2011). Further chemotactic signals promote binding of 

integrins on the monocyte surface with receptors of endothelial cells leading to an adhesion 

and transmigration through the endothelium into the tissue (Imhof & Aurrand-Lions, 2004). A 

chemotactic gradient leads the leukocytes to the avascular area of the wound (Morton & 

Phillips, 2016). Binding of integrin receptors and selectin to matrix proteins as cell adhesion 

molecules (CAMs) supports the monocyte movement (Brown, 1995). The early 

microenvironment of the wound consists of cytokines typical for inflammation (IFN-γ, 

interleukin 4 [IL-4], interleukin 10 [IL-10]) that support the differentiation of monocytes into 

macrophages (Stout et al, 2009). In general, there are two polarization forms of 

macrophages that play an important part in the wound healing of the skin. M1 macrophages, 

driven by IFN- γ, are actively involved in inflammation to defeat pathogens and are 

characterised by an increase of C-X-C motif chemokine 2 (CXCL2), IL-1β, CD16, CD32, 

CD80 and CD86 (Shi et al, 2019; Yunna et al, 2020). M2 macrophages, driven by IL-4, 

suppress inflammation and support proper wound healing, tissue formation and angiogenesis 

(Lawrence & Natoli, 2011). M2 macrophages characteristically express arginase-1, mannose 

receptor (CD206), IL-10, CD163, C-C Motif Chemokine Ligand 17 and 22 (CCL17, CCL22) 

(Buechler et al, 2000; Yunna et al., 2020). A balance of both polarizations is crucial for 

successful wound healing. During the inflammation phase, M1 polarization dominates 

whereas in the later states M2-macrophages prevail (Daley et al, 2010; Goerdt & Orfanos, 

1999). Macrophages further present antigens to T-cells, release pro-inflammatory proteins, 

growth factors and cytokines to attract fibroblasts, monocytes and neutrophils and support 

cell proliferation and matrix production by fibroblasts (Baum & Arpey, 2005). Macrophages 

that do not contribute to the defence, persist, and presumably change their polarization into 

M2 later on (Khallou-Laschet et al, 2010).  

1.2.3 The proliferation phase 

The proliferation phase is initiated between 2 to 14 days after the skin damage (Robson et 

al., 2001). This phase can be divided in three to four parts: fibroplasia and granulation tissue 

formation, angiogenesis, and re-epithelialization.  
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During fibroplasia, fibroblasts start to enter the wound site within 2-3 days after injury 

mediated by PDGF, basic fibroblast growth factor (FGF2), TGF-ß and others (Robson et al., 

2001). Cellular movement within the fibrin network is enabled by the secretion of matrix 

metalloproteases (MMPs) which break down fibrin and other matrix components (Yager & 

Nwomeh, 1999). This proteolytic function is later limited by TGF-ß and connective tissue 

growth factor (CTGF) (Duncan et al, 1999). Fibroblasts adjust to synthesize collagens, 

elastin, and other proteins of the ECM, as fibronectin, proteoglycans, hyaluronic acid (Eckes 

et al, 2010). They form the basis for a new matrix and close the wound-induced tissue gap 

(Martin, 1997). Collagen deposition begins with the invasion of fibroblasts and peaks about 

5-7 days after wounding (Morton & Phillips, 2016). The resulting granulation tissue replaces 

the provisional matrix formed by the clot (Gurtner et al, 2008). The granulation tissue 

appears red due to the high vascularization and is very vulnerable (Reinke & Sorg, 2012). 

The ECM is important for development and movement of cells. Balance of matrix production 

is ensured by a decrease of matrix production by fibroblast with exuberant increasing ECM 

(Mahdavian Delavary et al., 2011). Wound contraction starts about 4 days after injury (Baum 

& Arpey, 2005). Triggered by TGF-ß1 and PDGF, fibroblasts differentiate into myofibroblasts, 

which contract the wound site, restore mechanical strength and produce even more ECM 

proteins (Werner & Grose, 2003).  

Re-epithelialization of the wound surface is important to restore the barrier function of the 

skin and starts about 3 days after wounding (Reinke & Sorg, 2012). Keratinocytes proliferate 

and migrate, induced epidermal growth factor (EGF), keratinocyte growth factor (KGF), TGF-

α , TGF-ß1, VEGF and others, from the wound margin into the wound bed (Werner & Grose, 

2003). This process is further supported by stem cells from sweat glands and from the bulge 

region of hair follicles (Miller et al, 1998; Taylor et al, 2000). The lack of contact inhibition and 

physical tension leads to an intracellular reorganization of tonofilaments and induces 

migration of cells located at the wound borders (Jacinto et al, 2001). Intercellular, 

desmosomal connections are being released which enables cellular migration of 

keratinocytes, guided by a chemotactic gradient over the fibronectin-rich matrix of the upper 

wound site (Clark, 1983; Clark et al, 1982; Wallis et al, 2000). RhoGTPases and small 

GTPases ensure a structured epithelialization process (Nobes & Hall, 1995, 1999). Plasmin 

and diverse MMPs pave the way for wound covering keratinocytes (Nussenzweig et al, 1961; 

Ravanti & Kähäri, 2000). Cellular contact with cells of the opposite wound site induces 

migration stop and intercellular connection (Santoro & Gaudino, 2005). This re-

epithelialization process steadily covers the wound area. Afterwards the basal lamina and 

epidermal layers are re-established from outside in (Mahdavian Delavary et al., 2011).  

The avascular wound area results in a nutrition deficiency. Hence, novel vessels sprout from 

intact vessels into the undersupplied area (Sorg et al, 2007). Angiogenesis starts with the 
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activation and migration of endothelial cells from intact vessels induced by pro-angiogetic 

factors as VEGF, TGF-ß, angiopoietin and others (Tonnesen et al, 2000). After being 

activated, endothelial cells secrete proteolytic enzymes to dissolve their basal lamina and 

start to proliferate and migrate to form tubular sprouts (Reinke & Sorg, 2012). M2 

macrophages are crucial for angiogenesis as they are supposed to stimulate the endothelial 

cells at the sprouting tips via VEGF and guide them to other sprouts to form vessel loops 

(Fantin et al, 2010; Tammela et al, 2008). Afterwards, the vessel loops differentiate into 

capillary networks (Tonnesen et al., 2000). Pericytes and smooth muscle cells are attracted, 

which support the adaption and stabilization the vessel wall (Gao et al, 2021; Teichert et al, 

2017). Neovascularization of disrupted skin follow a regular pattern called “sola cutis se 

reficientis”, visually like a shrinking sun, that disappears upon completion (Sorg et al., 2007).  

1.2.4 The remodelling phase 

The last phase, the so-called remodelling phase, takes weeks up to years upon injury 

(Gurtner et al., 2008). During the remodelling process, most wound healing processes are 

downregulated and the majority of cells leave the tissue or undergo apoptosis (Gurtner et al., 

2008). The angiogenesis stops and the blood flow subsides due to decreasing nutrient 

demand (Mahdavian Delavary et al., 2011). A mature scar is characterised as almost 

avascular and acellular tissue (Gurtner et al., 2008; Sorg et al., 2007). MMPs in combination 

with inhibitors of metalloproteinases finally rearrange the ECM (Lovvorn et al, 1999). The 

predominant collagen type III produced in the proliferation phase is replaced by the stronger 

collagen type I which persists as large, organized parallel fibres (Lovvorn et al., 1999). After 

wounding the tensile strength increases by the time and reaches 20 % about 3 weeks  and 

80 % about 12 months of the healthy skin strength (Levenson et al, 1965). However, a scar 

never reaches the robustness of the intact skin and literature describes 80% strength as 

maximum outcome (Clark, 1985; Levenson et al., 1965). 

1.2.5 Treatments to support proper wound healing 

Proper wound healing can be supported by different therapy options. Dressings are the most 

common ways to support the wound healing as contact layer dressing, semipermeable films, 

hydrocolloids, foam, or hydrogels (Hawthorne et al, 2021). Antimicrobial dressings are also 

state of the art to prevent wound infection. Natural substances as honey or aloe vera further 

show successful treatment effects (Hawthorne et al., 2021; Molan & Rhodes, 2015). In 

special cases, wound healing is supported by negative pressure wound therapy (Hawthorne 

et al., 2021). A further approach, especially in chronic wounds, is to provide an environment 

beneficial for the healing process. This comprises scaffolds, usually composed of ECM 

components to provide a temporary covering and to promote cellular infiltration (Rodrigues et 

al, 2019). A further option represents the cell-based therapy, involving cultured epidermal 
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autografts, artificial skin equivalents consisting of neonatal keratinocytes, scaffolds with 

neonatal, dermal fibroblasts or allografts of human amnion/chorion membrane (Rodrigues et 

al., 2019). Beside the cell-based therapy, the acellular, secretome-based therapy as well as 

platelet-rich plasma showed promising results in the treatment of wounds (Hacker et al, 

2016; Mildner et al, 2013; Simader et al, 2017; van der Bijl et al, 2021).  

 

 

1.3 A scar is not a scar  

The wound healing process typically ends up with a scar. In the US, there is an annual $12 

billion market for scar treatment (Sen et al, 2009). Unfortunately, there is no reliable method 

or instrument to predict abnormal scarring after wounding. Around 100 million patients per 

year get scars from surgery in the developed world alone (Brown et al, 2008). About 90% of 

patients with severe burn injury and about half of all operated patients get a hypertrophic 

scar (Gauglitz et al, 2011). The general prevalence varies, but appears to be higher in 

Caucasians (Bombaro et al, 2003). Healing- and reepithelialisation-time as well as the injury 

depth is important for the outcome of scar formation (Kwan & Tredget, 2017). Most of the 

time, damage of the superficial skin does not end up in a scar (Monstrey et al, 2008). The 

likelihood of scar formation and the required time for healing increases with increasing 

harmed skin depth (Monstrey et al., 2008).  The quality of the scar is an important parameter 

to evaluate the outcome of wound healing. Under ideal conditions, the scar presents in the 

beginning as firm, haemostatic and slightly raised (Bayat et al, 2003). It matures for about 6 

to 9 months, afterwards it flattens, gets normotrophic, aesthetic and pale (Burd & Huang, 

2005). The final outcome is defined as normal scar. However, external and internal impacts 

affect the extent of scar formation and its outcome. Possible variants are the caving atrophic, 

the stretched and the excessive hypertrophic scar (Bayat et al., 2003).  

The atrophic scar manifests as a dell in the skin. It may be caused by acne vulgaris and can 

be subdivided in icepick, rolling and boxcar scars, classified by their depth and form of 

depression (Jacob et al, 2001). Complications of atrophic scars is the increased burden of 

disfigurement leading to psychological problems and social stigma, especially when scars 

occur in the face (Koo & Smith, 1991). 

The stretched scar increases its width within 6 months after injury for about one and a half of 

the normal scar and commonly occurs after surgery (Sommerlad & Creasey, 1978). 

Especially interventions in the knee or shoulder area lead to this type of soft, pale, and 

symptomless scar (Bayat et al., 2003). 

The hypertrophic scar on the other side appears as firm, rigid, raised, erythematous fibrotic 

tissue restricted by the boundaries of the original wound and develops within 4-8 weeks after 

skin damage (Bayat et al., 2003; Gauglitz et al., 2011). In the beginning, the development of 
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hypertrophic scars is similar to normal scars, but complex and exuberant fibrosis causes 

worse final outcome (Gabriel, 2011). In addition to the aesthetic aspect, a hypertrophic scar 

comes along with pain and pruritus (Gauglitz et al., 2011). As hypertrophic scars commonly 

occur over joints, their increased contraction also leads to restricted mobility (Engrav et al, 

1987). Hypertrophic scars may occur following burn injury, surgeries, or fractures (Esselman 

et al, 2006; Gabriel, 2011). Hypertrophic scars arise especially from wounds in areas of high 

tension, whereas in areas as scalp, palm, sole or eyelid, the formation of hypertrophic scars 

is rare (Matsumura et al, 2001). Skin areas frequently confronted with increased mechanical 

stress are the anterior chest (respiration, limb movement), the shoulder (body bending, limb 

movement), and suprapubic regions (body bending) (Ogawa, 2011). Sometimes hypertrophic 

scars regress. They decrease, get softer and almost achieve features of normal scars 

(Niessen et al, 1999). The occurrence of hypertrophic scars after surgery can be prevented 

significantly by an accurate wound care and proper tape fixation (Ogawa, 2022). Treatment 

options for already existing scars, especially for hypertrophic scars, are compression 

therapy, gel sheets, scar massage, corticosteroids in different regional applications, laser or 

surgical interventions as excision or, in more complex cases, geometrical techniques to 

reduce the tension (Ogawa, 2022). 

 

 

1.4 Processes affecting the extent of scar formation 

Scar formation is a sensitive interplay of various mechanisms. Involved processes can be 

roughly divided in contraction, mechanical stretching, and inflammation. Failure or alterations 

of one or more steps affect the extent of scar formation significantly.  

1.4.1 Contraction, a scar type affecting factor 

Scar contraction is primarily conveyed by myofibroblasts and fibroblasts (Nedelec et al, 

2000). Myofibroblasts differentiate after 1-2 weeks upon injury by TGF-ß, and PDGF from 

fibroblasts (Kwan & Tredget, 2017; Werner & Grose, 2003). Recent findings additionally 

reported an involvement of the serine proteases, especially dipeptidyl-peptidase 4 and 

urokinase, in the differentiation process of fibroblasts into myofibroblasts (Vorstandlechner et 

al, 2021). They can contract the wound for about 0.75 mm per day and usually disappear 

gradually afterwards (Marshall et al, 2018). It is supposed, that in hypertrophic scars a high 

number of myofibroblasts endure and induce the characterizing painful, rigid scar contraction 

(Marshall et al., 2018). Persistent fibroblasts, in addition, show enhanced production of 

collagen, TGF-ß and CTGF (Wang et al, 2008). They also induce contraction by an 

increased traction, stronger than required for their movement, whilst they migrate through the 

matrix of the scar (Harris et al, 1981). Mechanically induced changes of the tissue also 
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promote differentiation of fibroblasts in myofibroblasts (Ogawa, 2011). High tension also 

prevents myofibroblasts and other cells from apoptosis through a protein kinase B-dependent 

mechanism, which furthermore promotes the fibrotic process (Aarabi et al, 2007; Derderian 

et al, 2005).  

1.4.2 Mechanical stretching affects scar extent 

Mechanic impacts on the scar formation can come from outside as compression, shear force, 

stretching tension or compression, but also from inside as induced by growth, by osmotic or 

hydrostatic pressure (Demling, 2005; Dunkin et al, 2007; Lund et al, 1992; Melis et al, 2006; 

Ohura et al, 2008). Skin injuries per se cause an acute major change in the field of tension. 

Wound healing with its tissue altering phases further leads to persistent changes in tension. 

Mechanisms in the haemostasis and inflammation phase can cause pressure changes due 

to oedema and changes of circulation in the wound area and the surrounding skin (Orgill et 

al, 2009). During the proliferative and the remodelling phase, the wound gets closed and 

contracted. The influence of external forces during this time has a significant impact on the 

quality of the final scar (Ogawa, 2011; Silver et al, 2003). Nerve fibre receptors and 

mechanical sensors and receptors capture mechanical impacts on the integument (Lansman, 

1988; Sokabe & Sachs, 1990; Steen et al, 1992). These include mechanosensitive ion 

channels (Mg2+, K+, Na2+, Ca2+), cell adhesion molecules, the cytoskeleton but also 

mechanosensitive nociceptors for the impression of tension or compression (Giamarchi et al, 

2006; Hamill, 2006; Ingber, 1993; Ingber et al, 1986; Inoue et al, 2006; Sokabe & Sachs, 

1990; Steen et al., 1992). Cell adhesion molecules form the connection between the ECM 

and the cytoskeleton of the cells and are also in contact with mechanosensitive ion channels 

(Sokabe et al, 1997). Any spatial shift of the tissue impairs the cytoskeleton and in this 

context the ion channels (Sokabe et al., 1997). This stimulus will be transformed into 

electrical signals which induce cellular proliferation, as well as epithelium and blood vessel 

formation (Ogawa, 2011). The mechanical change stimulates TGF-ß production and 

activation, induces G proteins to promote cell growth and increases epidermal growth factor 

activation through calcium channels (Silver et al., 2003; Wang et al, 2006; Wipff et al, 2007). 

Nerve fibre receptors, as mechanosensitive nociceptors, get activated by mechanical stress 

(Steen et al., 1992). The stimulus is passed through the dorsal root ganglia into the afferent 

spinal nerves (Scholzen et al, 1998; Yamaoka et al, 2007). This leads to a release of 

neuropeptides in the skin through the distal ends of the spinal nerves (Yamaoka et al., 2007). 

Neuropeptides, as somatostatin, neurokinin A, substance P and others, have a direct impact 

on skin cells as fibroblasts, endothelial cells or leukocytes and may promote inflammation 

(neurogenic inflammation), cell accumulation, growth, and proliferation directly at the area of 

mechanic action (Foreman, 1987a, b, 1988; Holzer, 1998; Liu et al, 2006; Senba & Kashiba, 

1996). A relationship between hypertrophic scarring and the activity of neuropeptides and 
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neurogenic inflammation has been discussed (Akaishi et al, 2008; Chin et al, 2009; Scott et 

al, 2007; Scott et al, 2005). In conclusion, skin tension must be balanced, as it is important 

on the one side for skin growth, expansion, proper wound healing and wound contraction. On 

the other side, excessive tension seems to promote abnormal extensive scarring. 

1.4.3 Inflammation, the crucial impact of a wound healing phase on the scar formation 

Inflammation is an important part of proper wound healing. The involved cells and mediators 

defeat potential pathogens and bacteria to prevent infection and affect the production of 

ECM. However, prolonged inflammation phase is accompanied with higher risk of either 

chronic non-healing wounds or excessive scar formation (Niessen et al., 1999; van der Veer 

et al, 2009). The Inflammation extent during wound healing/ scar formation has been 

reported to correlate directly with the scar size (Mak et al, 2009; Ogawa, 2017). Inflammatory 

cells, mediators and signalling pathways thereby determine the intensity and duration of the 

inflammation process and therefore the extent of scarring. The inflammatory immune 

response is initiated by damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs) (Tang et al, 2012). DAMPs are endogenous 

molecules secreted or released by cells due to damage or stress (Tang et al., 2012). Typical 

DAMPs can be metabolites but also proteins that activate immune cells and promote their 

attraction to the wound site (Tang et al., 2012). The species-specific pattern recognition 

receptors (PRRs) are present on immune cells as well as tissue cells (Tang et al., 2012). 

PAMPs, which can be found on pathogen-specific proteins, such as DNA, certain 

carbohydrates, bacterial cell walls, and others, activate PRRs and thus promote the process 

of inflammation (Tang et al., 2012). Neutrophils and macrophages, as major cells in the 

inflammation phase, but also T-cells and mast cells appear to have an important impact on 

the extent of scar formation. The early inflammatory phase is orchestrated by neutrophils 

(Singer & Clark, 1999). Neutrophils release neutrophil extracellular traps (NETs) to capture 

and kill bacteria (Chrysanthopoulou et al, 2014). In vitro studies reported the ability of NETs 

to activate pro-fibrotic pathways in fibroblasts and to promote ECM production in 

myofibroblasts (Chrysanthopoulou et al., 2014). Macrophages have been reported as a 

crucial cell population for a successful healing process of the skin (Mahdavian Delavary et 

al., 2011). The balance of M1 and M2 macrophages plays thereby an important part. As 

previously described are M1 macrophages the predominant cell type in the second part of 

the inflammatory phase (Daley et al., 2010). Induced by the chemokine CCL2 amongst other 

factors, monocytes enter the wound site and differentiate in M1 macrophages (Mahdavian 

Delavary et al., 2011). M1 macrophages further enhance the inflammation by the release of 

several pro-inflammatory cytokines (Baum & Arpey, 2005). However, an increase of 

especially M2 polarized macrophages was described in abnormal scars (Butzelaar et al, 

2016). The pro-fibrotic M2 macrophages are the predominant macrophage type later during 
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wound healing and even support to dissolve the inflammation (Goerdt & Orfanos, 1999; 

Greenlee-Wacker, 2016). In a murine depletion model, a lack of macrophages in the 

inflammatory phase has been shown to be beneficial for a limited scar formation (Lucas et al, 

2010). Depletion in the proliferation phase however, promoted severe bleeding of the wound 

and a lack of macrophages during remodelling revealed even no relevant effect on the scar 

formation (Lucas et al., 2010). T-cells are divided in cytotoxic T-cells (CD8+) and helper 

(CD4+) T-cells. Helper T-cells are further subdivided in Th1, Th2, regulatory T cells and 

others. With regard to scar formation, Th2 cells support fibrotic functions as the collagen 

formation by the release of interleukin 13 (IL-13) and IL-4 (Trace et al, 2016). Regulatory T-

cells also exert fibrotic tasks in vitro, as they decreased the collagen production in co-culture 

of regulatory and other helper T-cells derived from healthy donors with abnormal scar-

derived fibroblasts (Murao et al, 2014). However, this effect was reversed when other helper 

T-cells were excluded from the co-culture-setting (Chen et al, 2019). This phenomenon 

indicated a direct and an indirect impact on the collagen production of fibroblasts by 

regulatory T-cells. In contrast, scar-derived helper T-cells have a pro-fibrotic impact on 

healthy fibroblasts (Wang et al, 2007). In contrast to Th2 and regulatory T cells, Th1 cells 

rather inhibit scar formation, as they release IFN-γ, which affects fibroblast proliferation and 

collagen type I and III expression (Wynn, 2004). The amount and activation of mast cells also 

directly correlate with increased scarring (Bagabir et al, 2012a). A positive effect of mast cells 

on the collagen secretion and proliferation features of fibroblasts through the release of 

factors as FGF2, IL4 of VEGF has been reported (Komi et al., 2020). However, the general 

impact of mast cells on the formation of scars in humans is still uncertain.  

During the wound healing process, multiple immune cells and skin tissue cells release 

inflammatory cytokines to promote the immune response. Later on, the release of anti-

inflammatory cytokines supports the phase transition and is crucial for the proliferation and 

remodelling. Maladjustment of the soluble microenvironment affects regular scar formation. 

An increase of interleukin 17 (IL-17) for example, is detected in hypertrophic scars (Zhang et 

al, 2018). The high IL17 concentration is attributed to a release by macrophages and 

promotes inflammation as well as CCL2, C-C Motif Chemokine Ligand 7 and 8 (CCL7, 

CCL8) concentration (Zhang et al., 2018). Other cytokines as C-X-C motif chemokine 12 

(CXCL12) or CCL2, have also been discussed as major directing factors in scar formation 

(Ferreira et al, 2006; Nishiguchi et al, 2018). In contrast, anti-inflammatory cytokines have a 

positive effect on scar formation and support regular scarring (Shi et al, 2016). The anti-

inflammatory cytokine IL-10, for example has a limiting effect on the extent of scar formation 

(Shi et al., 2016). Beside the cytokine-theories, several pathways are involved in scar 

formation. Especially Wnt/ßcatenin, TGFß/Smad, NF-κB and signal transducer and activator 

of transcription 3 (STAT-3) signalling are crucial for the formation of normal scars (Ogawa, 
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2011). It is therefore not surprising that these pathways are also enhanced in abnormal scars 

(Gabriel, 2009; Ray et al, 2013; Wang et al, 2020).  

In conclusion, the extent and characteristics of a scar depend on a complex interaction of 

multiple mechanisms during the wound healing process. In general, a prolonged 

inflammatory phase as well as constant mechanical stress at the wound site increase the 

possibility for pathologic scar formation. 

 

 

1.5 The keloid  

For many years, keloids have been defined as a type of fibroproliferative abnormal scar, 

characterised by an excessive continuous growth beyond the original borders of the wound 

(Tan et al, 2019). This definition is debatable as keloids even appear after a minimal trauma, 

like an insect bite or a vaccination, and even though many mechanisms in the keloid are 

typical for scarring, the pathology shows some tumour-like features (English & Shenefelt, 

1999; Tan et al., 2019). About 3000-2500 B.C. the ancient Egyptians already described a 

kind of large, hard bulging tumour that spreads. This pathologic phenomenon coincides with 

current descriptions of keloids (Breasted, 1930). However, this knowledge appeared to be 

forgotten or irrelevant. As late as the early 19th century, the tumor-like scar was re-described 

by Jean Louis Alibert. In 1817, he coined the term “keloid” in reference to one of the two 

most common keloidal shapes and its horizontal growth like the laterally movement of a crab 

(Murray et al, 1981). Racial ethnicity has been mentioned as one of the strongest impacts on 

the incidence of keloids, as people with dark pigmented skin have an increased risk to 

develop keloids (Burd & Huang, 2005; Wolfram et al, 2009). The incidence ranges in the 

Hispanic and Black population between 4.5 and 16 %, while the Asian and Caucasian 

population show an incidence below 1 % (Rockwell et al, 1989; Seifert & Mrowietz, 2009; 

Sun et al, 2014). More recent findings support this data, with increased levels of keloid 

development in African American patients following caesarean section or head and neck 

operations compared to Asian and Caucasian patients (Tulandi et al, 2011; Young et al, 

2014). However, the actual skin colour in Africans appears not to induce keloid formation, as 

light pigmented Africans have an almost similar increased risk for keloid formation than dark 

pigmented Africans (Kiprono et al, 2015). This might be explained by the higher familial 

incidence of keloids. First-degree relatives in the Chinese populations showed a heritability of 

72 %, followed by second- and third-degree relatives with a risk of 41 % and 17 %, 

respectively, to develop a keloid (Lu et al, 2015). In addition, close relatives are also more 

likely to develop even more serious keloids (Bayat et al, 2005; Lu et al., 2015). In addition, a 

common risk for keloid development was identified in twins (Marneros et al, 2001). Although, 

several signs suggest keloids as a hereditary pathology, related genes have so far not been 
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identified (Glass, 2017). Gender-specific differences in keloid occurrence have been 

described with increased levels of keloids in women (Bayat et al., 2005). However, these 

findings should be considered with caution, as they could be affected by an increased 

cosmetically and aesthetically awareness of women compared to men (Burd, 2006). There is 

no age limit for keloid formation, but a striking increased occurrence has been described in 

individuals between 10 and 30 years of age (Bayat et al., 2005). This age span includes 

years of significant endocrinological changes in humans, such as puberty or pregnancy, 

which suggests an impact of increased endocrinologic activity on the pathologic mechanisms 

of keloids (Seifert & Mrowietz, 2009). 

The trigger for the formation of a keloid reaches from minor traumas such as insect bites up 

to wounds caused by surgical intervention (English & Shenefelt, 1999). Other promoting 

minimal traumas could be injuries such as abrasions, blunt traumas or lacerations but also 

tattoos or piercings (English & Shenefelt, 1999). Sometimes, keloids even arise out of an 

inflammatory area without any injury such as herpes zoster, acne, and others. In case of 

keloids, the tissue response to these small kind of skin damages is exaggerated and 

induces, in some cases, subsequently more damage than the initial harming action.  

On a histopathologic level, the keloid is mostly characterised by an increased epidermal 

thickness, thick and loosely cross-linked collagen bundles, reduced number, or absence of 

rete pegs and increase of fibroblasts, myofibroblasts, fibrocytes, immune and endothelial 

cells (Limandjaja et al, 2020). Alpha smooth muscle actin (α-SMA) expression and dermal 

nodules often were described as distinguishing factors between hypertrophic scars and 

keloids. However, these phenomena have already been proven in both tissue types, whereas 

the unique collagen bundles remain, at least so far, keloid characteristic (Huang et al, 2014). 

Typical areas for keloid formation are, like hypertrophic scars, areas of high tension as the 

shoulder, the sternum, and the neck, but also the earlobes and the upper limbs (Bayat et al., 

2005; Bella et al, 2011; Burd & Huang, 2005; Monstrey et al, 2014; Murray et al., 1981).  

These areas are additionally characterized by increased levels of sebaceous glands, 

collagen, and a low number of M1 macrophages (Al-Attar et al, 2006; Butzelaar et al, 2017). 

Studies on the elastic potential of keloid prone-sites are contradictory as both an increased 

as well as decreased elasticity has been described (Bux & Madaree, 2012; Sano et al, 2018). 

Another keloid-specific phenomenon is that patients prone to form keloids do not always 

develop keloids (Al-Attar et al., 2006). The reason why patients sometimes develop keloids 

and sometimes normal scars or hypertrophic scars has not been elucidated yet.  

Keloids come along with symptoms similar to hypertrophic scars such as disfigurement, pain, 

and itching (Bijlard et al, 2017; Limandjaja et al., 2020; Murray, 1994). However, keloids 

reveal a specific perception of pain in the centre and of pruritus in the border area and the 

surrounding skin (Bijlard et al., 2017; Lee et al, 2004; Limandjaja et al., 2020; Murray, 1994).  
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In addition, they cause movement restrictions that increase with size (Limandjaja et al., 2020; 

Ud-Din & Bayat, 2014). The psychologic impairment induced by keloids clearly affects 

patients in their emotional wellbeing and causes a reduction in quality of life comparable to 

patients suffering from psoriasis (Balci et al, 2009; Bijlard et al., 2017). The pathogenesis of 

keloids remains so far unclear, which impairs the development of adequate research models 

and the identification of successful treatment options. The clinical diagnosis is commonly the 

preferred way to identify a keloid and to distinguish between keloids and hypertrophic scars 

(Gulamhuseinwala et al, 2008). The patient interview provides important characterizing 

information as keloids grow much slower than hypertrophic scars, spread beyond the wound 

borders into the healthy skin and never regress, whereas hypertrophic scars arise within the 

wound borders and might regress after a while (Ud-Din & Bayat, 2014). Keloids sometimes 

occur years after the injury, whereas hypertrophic scars, start to develop directly after an 

injury, like a normal scar but with ongoing exuberant fibrosis (Burd & Huang, 2005). In 

general, keloids rarely undergo pathologic analysis (Gulamhuseinwala et al., 2008). 

However, a study revealed that clinicians where able to accurately identify 81 % of 568 

keloids, whereas the wrongly assigned 19 % included normal scars, hypertrophic scar and 

acne keloidalis (Gulamhuseinwala et al., 2008).  

Treatment options for keloids are limited and individual treatments come along with a high 

rate of recurrence and in worse case scenarios, with an even worse scar formation than 

before. The most common treatment options of keloids encompass surgical excision, 

corticosteroids, silicon sheets, radiotherapy, brachytherapy, chemotherapy and targeted 

therapy, 5-fluorouracil together with triamcinolone and photodynamic therapy (Ogawa, 2022; 

Tan et al., 2019). However, greatest success has been achieved with combinations of more 

therapies (Ogawa, 2022; Tan et al., 2019). Treatment by solely surgical excision has a 

recurrence rate between 45 and 100 % (Mustoe et al, 2002). To better understand the 

struggle to identify the underlying mechanism(s) driving keloid formation, the next paragraph 

will give an overview of the current state of knowledge.  

Keloids can be subdivided based on different characteristics. They were categorized in 

regularly and irregularly shaped or in dumbbell, butterfly, and crab´s claw shaped scars 

(Akaishi et al, 2010; Huang et al, 2017). Keloids have further been distinguished by their 

convexnes in raised and flat keloids (Conway et al, 1960). The flat keloid was described as 

irregularly pigmented and spread with raised, hyperpigmented edges and flat, 

hypopigmented central areas (Bella et al., 2011). The raised keloid on the other side, has a 

bulbous appearance and defined borders (Bella et al., 2011). These subtypes indicate a high 

intralesional heterogeneity within keloids (Bella et al., 2011). In most studies, the description 

fits the flat keloid as the scar margins are described as active, invading part of the keloid 

which appear raised and red (Lu et al, 2007; Seifert et al, 2008). The borders are associated 
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with an increase in cell number, especially fibroblasts, endothelial and immune cells, a 

general decrease in programmed cell death and an increase in cell activity and proliferation 

(Huang et al., 2014; Le et al, 2004; Seifert et al., 2008; Suttho et al, 2017; Touchi et al, 

2016). The centre, on the other side, mostly exhibits a cellular decrease, limited cellular 

activity and in general an almost inactive area (Suttho et al., 2017). Interestingly, symptoms 

of keloids are associated with specific areas, as pruritus occurs more often at the margins, 

whereas pain is more likely in the central areas (Lee et al., 2004). As heterogeneous the 

keloid is, as contradictory are sometimes the results in several keloid-studies. Accordingly, 

there have also been active centres and inactive margins described (Tsujita-Kyutoku et al, 

2005). These findings might be set in a frame, as the bulging keloids were suggested to have 

active centres and in case of flat or better “superficial spreading” keloids the border area 

forms the active part (Limandjaja et al, 2018). In addition to the horizontal distinction, 

different active areas were defined going into the deep of the tissue (Chong et al, 2018; Jiao 

et al, 2017). In case of bulging keloids, the deeper layers were described to form the 

aggressive part (Chong et al., 2018).  

 

Figure 3: Areas prone to form specific keloid types 

The skin next to the keloid represents another quite controversial topic in keloidal research 

as some research groups define the adjacent skin to be equally to healthy skin (Jumper et al, 

2017). This hypothesis has been questioned or better disproved by several studies 

describing the special features of this intermediate skin phenomenon. Skin adjacent to 

keloids can even show symptoms typical for the active margins in flat keloids such as 

pruritus (Lee et al., 2004). An increase of blood circulation and cells, especially lymphocytes 

has been reported in the surrounding skin (Hahn et al, 2013; Jiao et al., 2017; Liu et al, 

2016). The adjacent skin also shows features as keloidal gene expression, enhanced 

apoptosis, and proliferation, typical for the keloid (Appleton et al, 1996; Hahn et al., 2013). 

However, there are still differences in the adjacent skin compared to keloids, such as a 
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higher amount of CD34 positive cells and a less fibrotic matrix formation (Erdag et al, 2008). 

However, keloidal collagen bundles have been reported to trespass from the keloid in the 

surrounding skin.(Limandjaja et al., 2020) Altogether, the skin adjacent to the keloid has a 

kind of intermediate state and might play an important role in the pathogenesis, as it is likely 

to be converted in keloid tissue over time. 

Researchers have attempted to decipher the driving force behind the keloid-scar for many 

years. This effort ended up in numerous studies highlighting the keloid from multiple sides. 

Special attention was given to the different cell types present in the keloid tissue. In the next 

passage, major findings about the so far recognized cell types in keloids and their supposed 

pathology-promoting functions will be described.  

Fibroblasts are meant to be the main driver in keloids regarding their production of ECM 

(Eckes et al., 2010). For this reason, it is no surprise that there is abundant literature on 

keloidal fibroblasts (Macarak et al, 2021). The number of fibroblasts was reported to be 

increased in keloids (Limandjaja et al., 2020) via increased proliferation and apoptosis-

resistance (Wang et al, 2018). The telomerase as well as senescence in general appears to 

be dysfunctional in keloidal fibroblasts, suggesting a pathology supporting ongoing growth 

(Granick et al, 2011; Yu et al, 2016). The ECM production and deposition by keloidal 

fibroblasts appears to be boosted and in contrast, the ability to break down ECM is reduced 

(He et al, 2012; Seifert et al., 2008). Keloidal fibroblasts are more migratory, presumable by 

an upregulation of TGF-ß associated pathways, by CTGF, insulin-like growth factor 1 (IGF-1) 

receptors, IL-6 and IL-8 and others (Do et al, 2012; Fang et al, 2016; Hu et al, 2014). They 

express higher levels of matrix-associated genes, such as collagen type I, collagen type III, 

fibronectin, elastin, glycosaminoglycans, proteoglycans and show higher sensitivity for 

several wound healing factors (Fang et al., 2016; Lee et al, 1991; Suarez et al, 2013; Yagi et 

al, 2013; Zhang et al, 2009). Interestingly, keloidal fibroblasts express mesenchymal stem 

cell-associated markers and differentiate into multiple cell types such as osteocytes, smooth 

muscle cells, neural lineage cells, adipocytes, and others (Iqbal et al, 2012; Moon et al, 2008; 

Plikus et al, 2017). These multipotent stem cell-like fibroblasts lose their abilities over time in 

culture. Therefore, it was hypothesized that the keloidal microenvironment supports their 

undifferentiated state and might be responsible in general for the formation of these cells 

(Moon et al., 2008).  

Fibroblasts and keratinocytes form an effective team in wound healing, as they support each 

other in their profibrotic and healing functions (Broughton et al, 2006). Keloid-derived 

fibroblasts as well as keloids are known to induce an upregulation of factors important in 

cellular growth and ECM formation in the healthy counterpart (Chua et al, 2011; Lee et al, 

2016). After injury, keratinocytes are important to cover the integument and to restore the 

epidermis. The epidermis in keloids however, does not completely fulfil its former functions 
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as there is a reduced barrier function of the stratum corneum, which comes along with an 

increased skin conductance and a higher loss of water through the skin (Sogabe et al, 2002). 

Furthermore, keloids are characterized by abnormal expression of involucrin, which is a 

known marker for terminal differentiation of epidermal cells (Limandjaja et al, 2017). A higher 

amount of involucrin was observed in the thicker epidermal layer of keloids, which indicates 

impaired cellular differentiation in the stratum corneum (Limandjaja et al., 2017). The keloidal 

keratinocytes additionally show an altered expression pattern of cytokines and growth factors 

(Khoo et al, 2006; Mukhopadhyay et al, 2010; Ong et al, 2007). Gene expression studies 

uncovered a higher cell convertibility and cellular motility (Hahn et al., 2013). Within the last 

years, the potential of keloidal keratinocytes for epithelial to mesenchymal transition (EMT) 

has obtained increasing attention (Hahn et al., 2013; Ma et al, 2015; Yan et al, 2015). EMT, a 

process of cellular conversion which is characterized by loss of epidermal and acquisition of 

mesenchymal cellular features, was described to be involved in proper wound healing as one 

of several sources to increase the number of myofibroblasts at the wound site (Stone et al, 

2016). This process was reported to constantly occur in keloidal keratinocytes (Yan et al., 

2015).  

Myofibroblasts enforce the contraction of the wound after a damage of the skin (Werner & 

Grose, 2003). They display a presence in about 33-81 % of all keloids (Limandjaja et al., 

2020). Myofibroblasts can arise from different sources. The most common way is the 

differentiation from fibroblasts induced by TGF-ß1 or PDGF (Werner & Grose, 2003). 

Additionally, embryonal stem cell-like cells, which persist in the endothelium of the healthy 

skin, can be induced by trauma. They migrate into the wound area and differentiate in 

myofibroblasts and even fibroblasts (Lim et al, 2019). The process involved in this cellular 

change is called endothelial to mesenchymal transversion (endoMT) and describes a cellular 

conversion similar to EMT but with endothelial cells as cells of origin (Lim et al., 2019). The 

reported associations of EMT and endoMT suggest an increased cellular transformation 

potential in keloids. Other discussed sources of myofibroblasts are invading fibrocytes and 

bone marrow-derived mesenchymal stem cells (Akino et al, 2008; Quan et al, 2004). The fact 

that myofibroblasts persist in the fibrotic area might promote the keloid formation, as they 

support an ongoing contraction and by this increased mechanic tension (Werner & Grose, 

2003). One interesting theory for the myofibroblast persistence is the lack of hair follicles in 

keloids. Hair follicles are important for the conversion of myofibroblasts into adipocytes 

(Plikus et al., 2017). Missing hair follicles might therefore provoke a backlog of 

myofibroblasts in the keloid with all its resulting consequences (Limandjaja et al., 2020).  

Although the vascular state in keloids has been described inconsistent, the general consent 

considers keloids as hypoxic tissue (Zhao et al, 2017). These contradictory findings can be 

explained by the high number of small but occluded vessels in hypertrophic scars and 
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keloids. (Zhao et al., 2017). This phenomenon was explained by the high proliferation rate of 

endothelial cells (Kischer et al, 1982). As part of the vessels, pericytes were discussed as 

potential pathologic driving force and an alternative source of keloidal fibroblasts (Kischer, 

1984). The vasculature system plays an important role in wound healing and scar formation. 

An increase of vessels together with a higher permeability was discussed to promote the 

keloid formation (Ogawa & Akaishi, 2016; Zhao et al., 2017). The “porous” vasculature might 

support the invasion of fibrosis-inducing immune cells which would consequently also 

prolong the inflammatory phase (Ogawa & Akaishi, 2016).  

As darker pigmentation of the skin was set in context with a higher chance to form a keloid 

scar, melanocytes are also considered as an important pathologic player (Burd & Huang, 

2005; Wolfram et al., 2009). Melanocytes were discussed to support the keloid formation by 

an interaction with fibroblasts through the damaged basement membrane and by an anti-

inflammatory inhibiting behaviour (Gao et al, 2013).  

Beside the previously mentioned ethnic, genetic, inflammatory, and cellular hypothesis, there 

are several other discussed theories about the source of keloid formation. These include viral 

components, stiffness gaps, nutritional imbalance, metabolic alterations, nitric oxide, 

hypertension, and psychoneuroimmune-endocrine causes for keloid formation (Alonso et al, 

2008; Butler et al, 2008; Cobbold, 2001; Hochman et al, 2015; Huang et al., 2017; Huang & 

Ogawa, 2013). 

One special hypothesis about the keloid as an incomplete malignant formation leads to 

extensive discussions in the scientific world (Ladin et al, 1998). This hypothesis questions in 

particular the specification of keloids as an abnormal scar and suggests keloids as a cancer-

like pathology (Tan et al., 2019). The main keloid-characterizing features as spreading, 

uncontrolled expansion, no regression, and a high chance of recurrence upon excision are 

also considered as typical cancer-specific characteristics (Tan et al., 2019). However, as the 

keloid does not metastasize it might be more like a non-malignant neoplasia (Tan et al., 

2019). The comparison is further supported since multiple tumour biomarkers are also 

positive in keloids (Tan et al., 2019). 

Research in keloids is strongly limited since keloids only occur in humans (Tuan & Nichter, 

1998). In vivo models comprise computational, invasive, and non-invasive models 

(Limandjaja et al., 2020). In vivo animal models include transgenically implanted keloids as 

well as single cell implantations or skin equivalents (Limandjaja et al., 2020). The induction of 

keloids in animals has never been successful so far and the best outcome were 

hypertrophic-like scars (Khorshid, 2005). In vitro models on the other side can be performed 

as whole explant model of excised keloids, which survive in culture for about 6 weeks 

(Bagabir et al, 2012b). Other in vitro models are the direct cultivation of keloidal cells in 

monolayers, skin equivalent or seeded in 3D scaffolds (Limandjaja et al., 2020). Co-cultures 



  21 

of different cell types direct or indirect as in double chamber systems give important 

information on paracrine interactions (Limandjaja et al., 2020). All models have their 

limitations, however, so far no successful keloid model has been developed that covers all 

experimental objectives (Limandjaja et al., 2020).  

 

1.5.1 Recent results of single cell RNA sequencing analyses of keloids 

In the last few years, single cell RNA sequencing (scRNAseq) proved as a powerful novel 

method in the world of basic research. This method provides the chance to get insights in 

complex pathologies, such as the keloid, by the investigation of their cellular cosmos and 

their molecular features based on the distinct transcriptomes (Papalexi & Satija, 2018). 

Numerous important, recently published findings were explored with scRNAseq and the 

research of keloids already profited from this method (Deng et al, 2021a; Papalexi & Satija, 

2018).  

The group of Deng et al. released the first description of keloids on a single cellular level in 

June 2021. They compared single cell datasets from the dermal layer of 3 keloids and 3 

normal scars. Bioinformatics analysis revealed an increase in endothelial cells, smooth 

muscle cells and myofibroblasts in the keloid tissue. The relative abundance of fibroblasts 

however was decreased. The research group of Deng et al. further was successful in the 

characterisation of the identified fibroblasts in secretory-papillary, secretory-reticular, 

mesenchymal, and pro-inflammatory subtypes, and subsequently demonstrated an increase 

of mesenchymal fibroblasts in keloids. These mesenchymal fibroblasts appeared to be 

involved in bone development. Analysis of cell-cell communications identified the 

mesenchymal fibroblasts as most interacting cells in keloids. They induce collagen 

expression in other fibroblasts through the secretion of periostin. Their transcriptional 

analysis further identified the increase of this mesenchymal fibroblasts in scleroderma, 

another fibrotic skin disease (Deng et al., 2021a).  

In December 2021, Xie et al. published another study, based on the transcriptional data 

gained by Deng et al. The group of Xie et al. first reanalysed the datasets and annotated the 

mesenchymal fibroblasts as chondrocytes. They identified tenascin-c as novel biomarker for 

the diagnosis of keloids (Xie et al, 2021). 

Xuanyu Liu and his research team published a paper in January 2022 comparing the 

scRNAseq data of 4 keloids and 4 skins adjacent to keloids. They confirmed the increase in 

fibroblasts and endothelial cells in keloids. The signalling pathways of TGF-ß and Eph-ephrin 

were associated with the fibrotic process and angiogenesis in keloids. They describe the 

upregulation of genes involved in pathways associated with tumorigenesis and highlight 

potential regulatory genes such as collagens, twist-related protein 1 (TWIST1) and others 

(Liu et al, 2022).  
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Recently, Shim et al. published a paper combining scRNAseq with spatial transcriptomics. 

They compared keloid with healthy skin and were able to locate the pathology-associated 

fibroblasts in the deeper layers close to endothelial sites of the keloid. This finding confirms 

the previously mentioned deep active areas in keloids. Another major finding was the 

mesenchymal activation of endothelial cells in keloids which was suggested to have a 

pathology supporting function (Shim et al, 2022).  

 

 

1.6 The extracellular matrix in skin, scar and keloid 

The ECM works as lounge area for cells, as communication and management centre but 

also as scaffold which defines the tissue. The major components are proteoglycans, collagen 

and water, but also many other important factors contribute to the matrix and its functions 

(Meenakshi et al, 2005; Theocharis et al, 2016). Through the matrix, cellular information can 

be sent to cells and stimulate their growth, differentiation and other physiologic features 

(Karamanos, 2019). The major amount of matrix components is produced by cells. External 

stimuli induce the cellular production and secretion of different factors of the extracellular 

matrix (Baum & Arpey, 2005; Chan et al, 2010). Some of them are entirely released to the 

extracellular space, others remain bound to the plasma membrane (Manou et al, 2019). 

Water relates significantly to the presence and concentration of several matrix factors 

(Comper et al, 1990). The matrix is important to maintain tissue homeostasis but also defines 

tissue development and morphogenesis. It defines the varying tissue types such as muscle 

or connective tissue (Manou et al., 2019). This capacity however might also have negative 

effects in a pathological context (Karamanos, 2019). Biomechanical but also pure 

mechanical stress constantly shape the ECM, its volume, and its composition (Karamanos et 

al, 2019).  

Proteoglycans as one of the major ECM elements are comprised by core proteins with 

negatively charged, glycosaminoglycans that are partially esterified with sulfate groups 

(heparin, heparin sulfate, dermatan sulfate and others) (Karamanos et al, 2018). They 

support the ECM structure, immobilize and/or store growth factors, and play a key role in 

mechanical properties such as tissue compression or hydration (Karamanos et al., 2018). 

According to their location, proteoglycans can be subdivided in an extracellular (hyalectans, 

small leucine rich), a pericellular (perlecan, agrin), a cell surface (syndecan, glypican) and an 

intracellular (serglycin) group (Karamanos et al., 2018). They regulate important cellular 

features such as adhesion, cell death, differentiation, migration, proliferation and survival as 

well as fibrillogenesis of collagens (Karamanos et al., 2018).  
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Unbound glycosaminoglycans such as hyaluronic acid are important for the water balance of 

the ECM and are also involved in tissue repair or regeneration, homeostasis, muscle 

development or embryogenesis (Garantziotis & Savani, 2019).  

Collagens, as the most abundant component within the ECM (30 %), is mainly present as 

collagen type I, II and III, which make up about 80-90 % of the total ECM collagen (Kirkness 

et al, 2019; Sorushanova et al, 2019). They consist of homo- or hetero-trimeric alpha-chains 

which form of triple-helices (Kirkness et al., 2019). There are 28 different collagen types, 

some of them are present in many different tissue types (type I, III), others are relatively 

specific as in basal membrane (col type IV, VII, XV, XVII, XIX), connective tissue (col type II, 

IX), epithelial tissues (col type XIII, XVII), myotendinous junctions (col type XXII), peripheral 

nervous system (col type XXVIII), tendons and cartilage (col type X, XI, XII, XX, XXIV, XXVII) 

(Sorushanova et al., 2019). Collagens provide important scaffold features but also confer 

tissue stabilization and flexibility (Sorushanova et al., 2019).  

Another important component of the ECM are elastic fibres. They are primarily present in 

tissues of constant mechanical stress such as the lungs, the skin, or arteries (Vindin et al, 

2019). Tropoelastin, a soluble precursor of elastin, is released by cells and subsequently 

interconnects with fibrillin, an essential glycoprotein, to form a network of elastic fibres 

(Vindin et al., 2019). Elastic fibres can interact with other ECM components to support 

cellular signalling and store growth factors in the matrix (Godwin et al, 2019). The amount of 

elastin in the human body Declines with age (Fhayli et al, 2019).  

The covalent binding of tropoelastin with collagens is promoted by lysyl oxidase (LOX) and 

LOX-like proteins (Vallet & Ricard-Blum, 2019). This binding supports the stabilization of the 

ECM and provides stiffness (Vallet & Ricard-Blum, 2019). LOX and LOX-like protein interact 

with many growth factors and are also involved in important mechanisms as remodelling, 

repair and development of tissues (Vallet & Ricard-Blum, 2019).  

Another ECM factor important for response to tensions is fibronectin. Fibronectin is an 

important adhesion molecule for cell migration and is also involved in proliferation, and matrix 

stabilization (Zollinger & Smith, 2017). Laminins are heterotrimeric glycoproteins consistent 

of an alpha, beta and gamma chain and are known as important compound of basic 

membranes (Aumailley, 2013). Tenascins are matricellular proteins (Murdamoothoo et al, 

2018). They consist of three domains and can be subdivided in tenascin-C, -R, -W and –X 

(Imanaka-Yoshida & Matsumoto, 2018). Tenascins modulate cell adhesion and specific 

subtypes are associated with morphogenesis and tissue development (tenascin-C), chronic 

inflammation and fibrosis (tenascin-C), organogenesis (tenascin-X), neurogenesis (tenascin-

R), osteogenesis (tenascin-W), and others (Imanaka-Yoshida & Matsumoto, 2018; Midwood 

et al, 2016; Murdamoothoo et al., 2018; Scherberich et al, 2005; Tucker & Degen, 2019; Xu 

et al, 2014).  
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There are several changes in the composition of the ECM induced by scar or keloid 

formation in the skin. The amount of ECM is increased in scars and consists of more water 

(Bailey et al, 1975; Kwan & Tredget, 2017). The total collagen in the healthy skin consists of 

about 80 % type I, 10-15 % type III and a minimal amount of collagen type V (Hayakawa et 

al, 1979; Kwan & Tredget, 2017). In contrast, the hypertrophic scar collagen displays 

collagen type III percentage of 33 and 10 % collagen type IV (Kwan & Tredget, 2017). Also, 

the thickness of collagen bundles is altered in hypertrophic scars, compared to the healthy 

skin. Collagen bundles in the healthy skin are arranged in a nonparallel “basket-weave” way, 

whereas they are aligned parallel to the scar surface (Verhaegen et al, 2009). In keloids, on 

the other side, significantly thicker, disorganized, loose collagen bundles are described 

(Verhaegen et al., 2009). The ratio of type I collagen to type III collagen in normal scars 

seems to be about 6:1, whereas in keloids a ratio of 17:1 was reported (Verhaegen et al., 

2009).  

The amount of elastin appears to be decreased which would explain the increased scar 

stiffness (Amadeu et al, 2004). Hyaluronic acid is present in the normotrophic scar in form of 

a papillary layer (Bertheim & Hellström, 1994). This layer was also identified in hypertrophic 

scars but much thinner (Bertheim & Hellström, 1994). No information on the relative amount 

of hyaluronic acid was found in keloids but in comparison with normal scars keloids reveal an 

equal amount of hyaluronic acid in the epidermis and the dermis (Bertheim & Hellström, 

1994).  

An increase of versican, biglycan and glycosaminoglycans has been reported in hypertrophic 

scars and keloids (Carrino et al, 2012; Hunzelmann et al, 1996). 

Decorin, a small leucine-rich proteoglycan, has an antifibrotic effect and reduces contraction 

(Buraschi et al, 2019). It also alters fibrillogenesis and supports a thinner formation of 

collagen fibers (Reed & Iozzo, 2002). An increase of decorin has been described in 

hypertrophic scars but not in normal scars or keloids (Garg et al, 1996; Hunzelmann et al., 

1996; Scott et al, 1998). The amount of fibrillin-1 is decreased in any scar type compared to 

healthy skin (Amadeu et al., 2004). The amount of periostin, tenascin, chondroitin sulfate and 

fibronectin is elevated in keloids (Dalkowski et al, 1999; Ikeda et al, 2009; Kischer & Hendrix, 

1983; Maeda et al, 2019).  

The distinct ECM composition in keloids might be supported by an increase of enzymes 

affecting collagen production and persistence, such as the matrix metalloproteinases MMP-2, 

MMP-9 or tissue inhibitors of metalloproteinases -1/-2 (Ulrich et al, 2010).  

The ECM assumes important functions regarding wound healing and scar formation. 

Detected alterations in the ECM composition in hypertrophic scars or keloids can be seen as 

a result of fibrotic processes but also as potential scar-promoting components.  
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1.7 The neuronal system in skin, scar, and keloid 

The human skin is interweaved by numerous nerve fibres of the peripheral nervous system 

to ensure the sensory and protective function of the skin. Autonomic as well as sensory 

nerves are present in the skin (Besné et al, 2002; Hendriks et al, 2018). The skin nerves 

enter the skin coming from the dorsal root and the sympathetic ganglia and transmit 

according to their function exogenous stimuli or endogenous stimuli from or to the central 

nervous system (Abraira & Ginty, 2013; Roosterman et al, 2006). Exogenous signals can be 

set by mechanical forces, temperature, chemicals, electricity, and others (Abraira & Ginty, 

2013). Endogenous stimuli detected by the skin comprise physiologic as well as 

pathophysiologic changes (Abraira & Ginty, 2013). Nerve fibre qualities present in the skin 

are Aß-, Aδ- with fast conduction velocity and C-fibres with the slowest velocity (Nolano et al, 

2013). Between the dermis and the hypodermis is the subdermal plexus, smaller nerve fibres 

of the skin starting or ending up in this plexus (Zhang et al, 2010). The nerve fibres cross 

through the matrix till they reach their target structure, this can be sweat glands, vessels, the 

arrector pili muscle, hair follicles but also multiple sensory units as Meissner corpuscles, 

Merkel discs, Ruffini corpuscles, Krause end bulbs, Pacinian corpuscles or even the 

subepidermal nerve plexus as a neuronal network close to the epidermis (Gibbons et al, 

2009; Iheanacho & Vellipuram, 2022; Reinisch & Tschachler, 2012; Siepmann et al, 2016; 

Siepmann et al, 2012). Any injury of the skin that includes the dermis comes along with 

damage in nerve fibres. About one third of all peripheral nerve trauma results in functional 

limitations and insufficient regeneration (Noble et al, 1998). This includes chronic pain, loss 

of sensation and other limitations (Wang et al, 2019). Depending on the extent of a 

peripheral nerve injury, it can be assigned to one of three different types. The neuropraxia 

with no structural damage of the nerve, the axonotmesis with disconnection of the axons and 

the worst case, the neurotmesis, a complete interruption of the nerve fibre (Seddon et al, 

1943). The effective healing process of axonotmesis including full recovery takes up to 4 

months, whereas neurotmesis often requires initial reattachment and, depending on the 

severity, comes along with a general poor recovery in function (Sunderland, 1951). 

Insufficient neuronal repair mechanisms can induce fibrotic harm as extraneural, dispersive 

or intraneural fibrosis which limit a proper neuronal function (Sakurai & Miyasaka, 1986).  

Damaged nerve fibres release neuropeptide substance P. This neuropeptide promotes 

inflammation, fibrogenesis as well as cell proliferation and angiogenesis (Pang et al, 1996). 

One potential counterpart of substance P is the neutral endopeptidase, which is bound to the 

cell membrane and breaks down the neuropeptide (Okamoto et al, 1994). Substance P is 

involved in the remodelling phase of wound healing, as it can regulate MMPs and their 

inhibitors (Ramos et al, 2007). In abnormal scars, an increased amount of substance P has 

been reported and the concentration of neutral endopeptidase was decreased (Crowe et al, 
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1994; Jing et al, 2010). This findings indicated an involvement of substance P in excessive 

scar formation (Jing et al., 2010).  

The nerve fibre density increases by the extent of scarring, as normal scars seem to have a 

higher density than healthy skin, and hypertrophic scars an even higher density (Crowe et 

al., 1994).  

Literature about the neuronal system in keloids, on the other side, is scarce and inconsistent.  

In 2008, Hochman et al. described a greater number of nerve fibres in keloids compared to 

normal skin. Their results are based on immunohistochemical staining of S100 calcium 

binding protein. The described nerve fibres appeared to be present in greater depth of the 

keloid tissue and should exhibit a much thinner and longer morphology compared to fibres of 

the healthy skin (Hochman et al, 2008). 

In 2012, Tey et al. reported an insignificant decrease in nerve density in keloids compared to 

healthy skin. This finding was based on immunofluorescent staining of the pan-neuronal 

marker Protein gene peptide 9.5 (PGP9.5) in 10 µm-thick sections of itching keloids and 

healthy skin (Tey et al, 2012).  

Another study performed by Saffari et al. reported similar and described a decrease of nerve 

fibres in keloids with the highest density in the upper dermis in the border area of keloids 

(Saffari et al, 2018). 

The research group of Drummond reported in 2018 an increased expression of alpha1-

adrenoceptor in nerve fibres, fibroblasts and blood vessels in keloid tissue compared to 

healthy skin and burn scars. The alpha1-adrenoceptor was associated with increased 

inflammation, wound healing, and pain. These staining-based findings were performed using 

PGP9.5 as marker for nerve bundles. (Drummond et al, 2018; Hochman et al., 2008). 

An increased response of the previously described neurogenic inflammation induced by 

mechanic forces was discussed in context with keloid formation by Ogawa et al (Ogawa, 

2011). 

Using scRNAseq, several research groups identified a neural cell cluster in keloid tissue but 

without any in-depth investigations. Deng et al. solely described a neural cell cluster, defined 

by the marker gene neurexin 1 (NRXN1) (Deng et al., 2021a). Liu et al. detected a neural 

and a separate Schwann cell cluster characterised by a strong expression of S100 calcium 

binding protein B (S100B), neuronal membrane glycoprotein M6-b (GPM6B), NRXN1, alpha-

crystallin B chain (CRYAB) and transcription factor jun-B (JUNB), myelin protein zero (MPZ), 

myelin basic protein (MBP), S100B, respectively. They described no significant difference in 

the amount of neural or Schwann cells, comparing keloidal cells and cells from keloid-

adjacent skin. However, an increased communication of neural cells with other cells as 

fibroblasts, vascular endothelial cells and keratinocytes was defined. They also appeared to 

express a higher amount of TGF-ß1 compared to cells gained from keloid surrounding skin 
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(Liu et al., 2022). The group of Shim defined a neural cluster by the expression of S100B 

(Shim et al., 2022). 

This limited state of knowledge with regard to the neuronal impact on the keloid formation 

encourages to expand research in the neurologic field of keloids.  

 

 

1.8 Schwann cells and their role in tissue regeneration 

The peripheral nerve system of the human body is structured in three layers. The inner layer, 

the endoneurium, consists of the nerve fibres/axons, Schwann cells, blood vessels, 

fibroblasts and macrophages surrounded by ECM (Causey & Barton, 1959; Gamble & 

Eames, 1964). The embedded nerve fibres are covered with Schwann cell that are in 

addition enclosed by a basal lamina (Stoll & Müller, 1999). The endoneurium is surrounded 

by the perineurium, a multi-layered cellular tube (Sunderland & Bradley, 1952). The 

endoneurium and the perineurium together form a nerve fascicle. In larger nerves, many 

fascicles are connected by matrix proteins to the third layer, the epineurium (Reina et al, 

2020). Not all nerves are multi-fascicular, as there are also small nerves consisting just of a 

single fascicle (Tan et al, 2014). Schwann cells assume important caregiving functions for 

the peripheral nerve system (Nave, 2010). Two types of Schwann cells have been described 

in the healthy adult. The non-myelinating Schwann cells, or Remak cells, cover axons of 

small diameter which are especially present in the autonomic-, but also in the sensory-

nervous system (Jessen & Mirsky, 2019a). One or more axons can be caved in the bodies of 

non-myelinating Schwann cells (Monk et al, 2015). In contrast, myelinating Schwann cells 

ensheath multiple layers axons of a larger extent as motor neurons and some sensory axons 

(Jessen & Mirsky, 2019a). Myelinating Schwann cells produce myelin as part of their cell 

membrane which forms a kind of insolating layer around the axon (Osso & Chan, 2017). This 

special feature of myelinating Schwann cells supports a fast conduction of nerve impulses 

(Lubetzki et al, 2020). Both Schwann cell types, myelinating and non-myelinating, provide 

important trophic and metabolic factors to the nerve to ensure a proper function and are 

involved in specific repair mechanisms upon neuronal damage (Jessen & Mirsky, 2019a; 

Nave, 2010). Schwann cells can be detected by S100, which has been proposed as general 

Schwann cell marker (Bhattacharyya et al, 1992). Myelinating Schwann cells can be 

identified by their additional expression of factors associated with myelination, structure, and 

cholesterol synthesis (early growth response protein 2 [Krox20], MBP, myelin-associated 

glycoprotein [MAG], MPZ, peripheral myelin protein 22 [PMP22], periaxin), whereas non-

myelinating Schwann cells are positive for factors also present in Schwann cell precursor 

cells, such as NGFR, neural cell adhesion molecule (NCAM), L1 or glial fibrillary acidic 

protein (GFAP) (Jessen & Mirsky, 2019a).  
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In the next section, the process of Schwann cell development will be outlined in more detail. 

Schwann cells evolve out of the neuronal crest in a strictly regulated process. Based on 

analysis of the neuronal system in rodents, developmental stages have been defined in the 

early embryonic nerves (Jessen & Mirsky, 2005). In the early embryonal phase, the Schwann 

cell precursor cells differentiate from neural crest cells (Jessen et al, 1994). In contrast to the 

adult structure, nerves in this early stage are solely composed of multiple packed axons and 

flat Schwann cell precursors without other cells, basal lamina, or space matrix (Jessen & 

Mirsky, 2005). Few days later, this structure converts suddenly and the perineurium and the 

basal lamina evolve (Jessen & Mirsky, 2005). The Schwann cell precursor cells develop into 

their next stages, the immature Schwann cells, and the ECM, fibroblast and blood vessels 

become part of the nerve (Jessen & Mirsky, 2005). After this step, the nerve composition is 

already adequate to the adult nerve (Jessen & Mirsky, 2005). However, the Schwann cell 

precursor cells are not only precursor cells of immature Schwann cells but also from 

endoneurial fibroblasts, melanocytes (via melanoblasts) and even parasympathic neurons 

(Adameyko et al., 2009; Dyachuk et al, 2014; Furlan et al, 2017). In contrast to neural crest 

cells, Schwann cell precursor cells are positive for factors associated with differentiation of 

glia cells (Jessen & Mirsky, 2005). Factors important for the differentiation of crest cells into 

Schwann cell precursor cells are forkhead box D3 (FoxD3), transcription factor SOX-10 

(Sox10), receptor tyrosine-protein kinase erbB-3 (Erbb3), Notch, Neuregulin-1, zinc finger E-

box-binding homeobox 2 (Zeb2), endothelin and transcription factor AP-2 alpha (AP-2 alpha) 

(Brennan et al, 2000; Britsch et al, 2001; Garratt et al, 2000; Morris et al, 1999; Quintes et al, 

2016; Stewart et al, 2001; Thomas & Erickson, 2009; Woodhoo et al, 2009). FoxD3 diverts 

lineage development towards Schwann cell development instead of neurons of melanocytes 

(Thomas & Erickson, 2009). In contrast, Sox10 is important for the Schwann cell precursor 

development out of neural crest cells and promotes the neuregulin receptors ErbB3 (Britsch 

et al., 2001). This receptor, in addition, supports indirectly the generation of Schwann cells 

(Garratt et al., 2000). The contact of Schwann cell precursor cells with axons is vital for the 

cells as the axons express neuregulin 1 (Garratt et al., 2000). Notch associated precursor – 

axon interaction has been associated with the time span for Schwann cell differentiation as 

an increase in Notch signalling enhances differentiation whereas an inactivation of Notch 

delays Schwann cell conversion (Woodhoo et al., 2009). A connection between Notch, 

Neuregulin-1 and ErbB3 has also been discussed (Dong et al, 1995). Endothelin shows 

opposite effects as an increase induces a delay in Schwann cell differentiation, whereas an 

inactivation promotes faster cellular conversion (Brennan et al., 2000). AP-2 alpha has been 

discussed to support and maintain the precursor cellular state (Stewart et al., 2001). Human 

nerve development and orientation in the embryo is not dependent on the presence of 

Schwann cells. However, the Schwann cells are important for the nerve to find its target and 
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to properly get in contact with it (Meyer & Birchmeier, 1995; Morris et al., 1999; Woldeyesus 

et al, 1999). Schwann cells precursor cells differentiate into immature Schwann cells which 

enclose several (Jessen & Mirsky, 2005). While survival of precursor cells is dependent on 

the contact with axons, immature Schwann cells control their survival by the secretion of 

autocrine factors as leukaemia inhibitory factor (LIF), lyophosphatidic acid, PDGF, 

neurotrophin-3, and insulin-like growth factor 2 (IGF-2) (Dong et al., 1995; Meier et al, 1999; 

Reynolds et al, 1991; Weiner & Chun, 1999). In the next developmental step, the axons are 

isolated by multiple proliferating and apoptotic Schwann cell to form the final axon bundles 

covered by single Schwann cells in a non-myelinating or myelinating way depending on their 

extent (Jessen et al, 2015). Developmental Schwann cell proliferation is driven by Notch, 

neuregulin-1, TGF-ß and laminin, which is a component of the basal lamina (D'Antonio et al, 

2006; Garratt et al., 2000; Woodhoo et al., 2009; Yu et al, 2005). Afterwards, myelinating or 

non-myelinating Schwann cells assume their mature, nerve supporting functions (Webster et 

al, 1973). In this mature state Schwann cells hardly proliferate (Webster et al., 1973).  

Mature Schwann cells, as myelinating and non-myelinating Schwann cells, maintain a high 

potential plasticity (Boerboom et al, 2017). Their phenotype is related to environmental 

factors (Boerboom et al., 2017). A potential of myelinating Schwann cells to convert into a 

non-myelinating state when they get in touch with small nerve fibres and vice versa in case 

of thick nerve bundles has been suggested (Jessen & Mirsky, 2019a). However, the most 

impressive transformation of mature Schwann cells has been reported upon peripheral nerve 

injury. In case of an axonotmesis or neurotmesis, the axon-related Schwann cells undergo a 

phenotypic and morphologic change to ensure the survival of the damaged axon, to support 

its regeneration and to conduct reinnervation (Burnett & Zager, 2004; Jessen & Mirsky, 

2005).  

In case of neurotmesis, the nerve is completely disrupted, the distal part is dysfunctional and 

degeneration starts within 2-14 days and therefore, a neuronal regeneration coming from the 

proximal stump is required (Lunn et al, 1989; Tsao et al, 1994). The damaged nerve uses the 

distal, dying axon part as guiding structure for its regeneration (Rönkkö et al, 2011). For this 

reason, a reattachment of the proximal and the distal stump is required. The human body 

facilitates this reconnection by the formation of a tissue bridge which is especially formed by 

Schwann cells (McDonald et al, 2006). Surgical reconnection and, in severe cases, 

autografts or nerve conduits, can accelerate and support this process (Battiston et al, 2005). 

However, misguided targeting, incorrect innervation, and long regeneration times have a 

negative effect on the outcome of the neuronal repair process (Barrette et al, 2008; Höke, 

2006; Jonsson et al, 2013). The neuronal damage leads to a rapid change in the 

environment of the attached Schwann cells. This environmental change induces a 

reprogramming/transdifferentiation of mature Schwann cells into repair Schwann cells which 
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support nerve repair (Arthur-Farraj et al, 2012). This reprogramming includes proliferation, 

migration, cellular dedifferentiation, and activation (Armstrong et al, 2007; Chen et al, 2007). 

The injury-induced Schwann cell response comes along with several functional and structural 

changes, cellular rearrangement in Bungner Bands for neuronal guidance and macrophage 

attraction, also known as Wallerian degeneration. In the beginning, several factors 

associated with myelination are downregulated (MBP, MAG, MPZ, periaxin, and others) 

whereas factors detected in previous Schwann cell states (L1, NCAM, NGFR, GFAP) are 

upregulated (Jessen et al., 2015). About 50 % of myelin from injury-induced myelinating 

Schwann cells is removed by themselves through myelinophagy, a type of myelin-specific 

autophagy (Brosius Lutz et al, 2017). In this actin-dependent process, the myelin is broken 

down into small pieces, that are subsequently digested in lysosomes (Jessen & Mirsky, 

2005). The remaining myelin is phagocytosed by macrophages (Hirata & Kawabuchi, 2002; 

Martini et al, 2008). The macrophages are attracted to the injury site by cytokines as TNF-α, 

IL-1α, IL-1ß and CCL2 produced by repair Schwann cells (Martini et al., 2008; Shamash et 

al, 2002). 

In addition, the upregulation of several factors important for neuronal survival and elongation 

of axons were identified, including artemin, brain-derived neurotrophic factor (BDNF), glial 

cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), neurotrophin-3 (NT3), 

pleiotrophin, and VEGF (Boyd & Gordon, 2003; Jessen & Mirsky, 2019a). Repair Schwann 

cells are characterized by an elongated, narrow, spindle shaped, often branched morphology 

(Gomez-Sanchez et al, 2017). Within 4 weeks after trauma, myelinating Schwann cells 

double in length whereas non-myelinating Schwann cells even obtain the three-fold length 

(Gomez-Sanchez et al., 2017). They form partly overlapping tracks to target the regenerating 

nerve to their previous site of innervation (Jessen & Mirsky, 2019a). The transformation 

process of mature Schwann cells into repair Schwann cells is mediated by Raf/ERK, c-Jun N 

terminal kinase  (JNK), p38 MAP signalling pathways as well as the factors Notch, c-Jun, G 

protein-coupled receptor 126 (GPR126), signal transducer and activator of transcription 3 

(STAT3), Merlin, SRY (sex determining region Y)-box 2 (Sox2), paired box gene 3 (Pax3) 

and Id4 (Benito et al, 2017; Jessen & Mirsky, 2008; Kioussi et al, 1995; Mindos et al, 2017; 

Mogha et al, 2016). Especially c-Jun has a crucial function in the conversion process (Arthur-

Farraj et al., 2012). C-Jun induces the repair program and a lack of c-Jun results in a missing 

upregulation of factors as artemin, BDNF, GDNF, NGFR, N-cadherin, no proper myelin 

breakdown and no functional regeneration tracks and neuronal death (Arthur-Farraj et al., 

2012). C-Jun, but also STAT3 support the maintenance of the repair state in Schwann cells 

(Arthur-Farraj et al., 2012; Benito et al., 2017). Increased notch signalling promotes the 

demyelination process in Schwann cells after neuronal damage (Woodhoo et al., 2009). In 

addition, H3K27 demethylation, H3K4 methylation and H3K27 deacetylation have also been 
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set in context with the damage-induced response of Schwann cells (Ma et al, 2016). The 

migratory function of repair Schwann cells to reconnect the proximal and the distal stump is 

driven especially by Ephrin type-B receptor 2 (EphB2), Sox2, and N-cadherin (Parrinello et 

al, 2010). Induced by fibroblast-bound ephrin B, Sox2 promotes N-cadherin induced by 

EphB2 to get in touch with Schwann cells of the opposite stump (Parrinello et al., 2010). 

Extensive RNA sequencing analysis proposed several additional proteins and processes 

involved in the injury-induced response of Schwann cells (Bosse et al, 2006; Weiss et al, 

2016). One big limitation of nerve regeneration is the slow regeneration tempo of the nerve in 

combination with the loss of the cellular repair phenotype of Schwann cells over time 

(Jonsson et al., 2013). 

To be able to distinguish repair Schwann cells from mature or immature Schwann cells, 

GDNF, oligodendrocyte transcription factor 1 (OLIG1), sonic hedgehog (Shh), artemin and c-

Jun have been proposed as repair Schwann cell-specific markers (Jessen & Mirsky, 2016).  

After regeneration, repair Schwann cells convert back into a myelinating or non-myelinating 

state, for this reason the repair Schwann cells were only mentioned as a transient state 

(Jessen & Mirsky, 2016). 

The repair response of Schwann cells start within minutes to hours after nerve injury with the 

activation of JNK-pathway (Parkinson et al, 2008). Within the first day phospholipase A2 

immunoreactivity, LIF, IL-6, IL-1α, IL1ß, TNF-α , receptor tyrosine-protein kinase erbB-2 

(ErbB2) neuregulin receptor reach their highest level, whereas IL-1ß, and TNF-α peak within 

24 hours and subsequently decrease immediately (Kwon et al, 1997; Rotshenker, 2011). On 

day 5, the autophagy process peaks. GDNF peaks after 1 week, c-Jun rises for up to 10 

days and BDNF peaks after 2-3 weeks (De Felipe & Hunt, 1994; Eggers et al, 2010; Gomez-

Sanchez et al, 2015; Jessen & Mirsky, 2019a; Parkinson et al., 2008). Schwann cells 

proliferate fast within 4 weeks up to the 4-fold amount and are reduced by half after 2-3 

months (Jessen & Mirsky, 2019a). However, the level of c-Jun in the distal repair Schwann 

cells decreases by the time from 4 weeks till 10 weeks after injury (Gomez-Sanchez et al., 

2017).  

In 2018, the research group of Vadims Parfejevs revealed a functional involvement of glial 

cells (Schwann cells) in the repair process of damaged skin in rodents. Using genetic lineage 

tracing, the injury-induced migration of glial cells into the wound side was noticed. The 

accumulated glial cells were positive for Sox10, had no contact with an axon and steadily 

increased at the damaged area within two weeks after injury. These wound-associated glial 

cells were also positive for repair Schwann cell-markers (c-Jun, protein kinase R (PKR)-like 

endoplasmic reticulum kinase [pERK]) but also for proliferation factors (Ki67), factors typical 

for Schwann cell precursor cells (NGFR), and negative for MBP, which indicates a 

dedifferentiation and proliferation process. RNA sequencing analysis revealed a strong 
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association of the wound-site Schwann cells with ECM production, migration and TGF-ß 

signalling. A lack of these wound-healing associated Schwann cells affected proper wound 

closure and results in a decrease of myofibroblasts in the damaged area. However, the 

described Schwann cell function in wound healing has not been investigated in the repair 

process of the human skin (Parfejevs et al, 2018).  

In this context, the diversity of repair-associated Schwann cells should be revived (Jessen & 

Mirsky, 2005). 

 

 

 

Figure 4: Schwann cell transformation upon injury 
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1.9 Aims of the thesis 

Since the term “keloid” has been mentioned the first time in connection with this continual, 

border-crossing, fibrotic skin disease, several years of research have passed. Multiple cell 

types, first of all fibroblasts, have been analysed and various hypotheses are still part of the 

scientific discourse. The driving force behind the disease, however, still remains unclear.  

 

The first aim of this thesis was to use scRNAseq to uncover so far unrecognized cellular 

contributions and pathologic mechanisms in keloids and to define novel, promising 

therapeutic approaches.  

 

The second aim, emerging from the results of the first aim, was to comprehensively 

investigate the so far unrecognized keloid-specific Schwann cell population, to define their 

transcriptional pattern and their contribution to the keloidal pathology. 

 

The third aim was to verify the disease specificity of keloidal Schwann cells by the 

investigation of independent datasets of skin, scars, and keloids. 
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2 CHAPTER TWO: RESULTS 

2.1 Prologue 

Multiple theories for the formation of keloids have been mentioned so far, whereby ethnical, 

hereditary and inflammatory mechanisms are most commonly discussed. However, the initial 

stimulus for keloid formation has not been elucidated yet. In the first publication of the thesis, 

the cellular environment of keloid tissue was unravelled applying scRNAseq. Thereby, a so 

far unrecognized presence of Schwann cells in keloids was identified. These keloidal 

Schwann cells showed pathology-supporting features and appeared to induce a pro-fibrotic 

state in macrophages. 
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2.2 Interlude 

In the first study, we explored the keloidal Schwann cells with their pro-fibrotic expression 

pattern in keloids.  

In the second study of this thesis, we verified the tissue specificity of keloidal Schwann cells 

in independent datasets of healthy skin, normal scars, keloids and skin adjacent to keloids 

generated by four independent research groups. Furthermore, we aimed to allocate the 

keloidal Schwann cells in the lineage development of so far described Schwann cell 

subtypes. 
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3 CHAPTER THREE: DISCUSSION 

About 5000 years ago, Keloids have already been described as continuously spreading 

tumour-like pathology (Breasted, 1930). The term “keloid” has been formed later, about 200 

years ago, accompanied by a more decent characterization of this pathology (Murray et al., 

1981). Since then, still no determinative cause for this fibrotic skin disease has been 

identified (Limandjaja et al., 2020). Numerous hypotheses are still being discussed and 

challenged, including inflammatory, mechanic, hereditary and ethnical theories, amongst 

many others (Limandjaja et al., 2020). A keloid is an extremely versatile disease that involves 

multiple cells with a pro-fibrotic state, including fibroblasts, endothelial cells and others 

(Broughton et al., 2006; Kischer et al., 1982; Lim et al., 2019; Macarak et al., 2021).  

 

“All that glisters is not gold” (Shakespeare et al, 1823) 

Our scRNAseq analysis revealed novel insights in the cellular environment of keloids. In 

comparison with healthy skin and normal scars, increased numbers of fibroblasts and 

endothelial cells have been identified. These results correlate with previous findings of 

increased numbers of fibroblasts and microvessels in keloids (Limandjaja et al., 2020). In 

addition, we observed an elevated number of cells associated with the neuronal system in 

keloids, the Schwann cells. A neuronal involvement in this pathology is not surprising, as 

patients frequently suffer from pruritus and pain. Nonetheless, the neuronal system and its 

potential pathologic involvement have been scarcely investigated so far. Studies based on 

staining of PGP9.5 describe a significantly lower nerve fibre density in keloids compared to 

healthy skin (Saffari et al., 2018; Tey et al., 2012). In contrast, Hochman et al. reported a 

significant increase of nerve fibres in keloids based on immunohistochemical staining of 

S100 to detect neuronal cells (Hochman et al., 2008). These seemingly controversial results 

might be explained by the different biomarkers investigated. PGP9.5, also known as UCHL1, 

is a neuron-specific cytoplasmic protein and serves as a marker especially for small nerve 

fibres (Otsuki et al, 2004; Van Acker et al, 2016). S100 is a family of calcium binding proteins 

consisting of 24 members (Donato et al, 2013). They can be subdivided in intracellular, intra- 

and extracellular subtypes according to their site of action, and are involved in cell 

proliferation and differentiation, programmed cell death, but also cell migration amongst 

others (Donato, 2003). Especially S100B has received attention in context with the neuronal 

system (Hachem et al, 2005; Rickmann & Wolff, 1995). It is highly expressed in astrocytes, 

Schwann cells, melanocytes, Langerhans cells, adipocytes and chondrocytes and supports 

the cellular shape, homeostasis and the energy metabolism (Donato et al., 2013) of the cells. 

In the peripheral nervous system, S100B has been shown to support the migration of injury-

induced repair Schwann cells (Sbai et al, 2010). Multiple studies proposed S100B as marker 
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for melanocytic tumors, breast cancer or neuronal damage, however a concrete qualification 

as marker for axons has not been reported (McIlroy et al, 2010; Mocellin et al, 2008; 

Muramatsu et al, 2003; Sindic et al, 1984). Already in 1985, S100B has been mentioned as 

factor associated with glial differentiation (Dhillon et al, 1985). The staining depicted in our 

study, using PGP9.5 to visualize neurons, corroborates the results of low neuronal density in 

keloids. In addition to the PGP9.5 staining, we further visualized neurofilaments to point out 

the accurate density of nerve fibres in keloids. Neurofilaments are about 10 nm-thick 

intermediate filaments specific for neurons (Schmitt & Geren, 1950). The highest amount of 

neurofilaments within a nerve cell was described in the axons, with low levels in the perikarya 

and dendrites (Burton & Wentz, 1992). Our staining of S100B additionally showed positivity 

of Schwann cells in the dermal area of the skin. Therefore, Hochman et al. presumably were 

the first to get a glimpse on Schwann cells in keloids. Together, these studies indicate a 

higher reliability of PGP9.5 or neurofilaments to determine the neuronal density in tissues, as 

the plain presence of glial cells does not always imply the presence of axons and therefore a 

connection with the neuronal system, as shown by our results.  

 

“Love all, trust few, do wrong to none”(Shakespeare, 1813) 

In 2021, the first scRNAseq works describing the cellular environment in keloids have been 

published (Deng et al., 2021a; Liu et al, 2021; Xie et al., 2021). These studies reported 

clusters of Schwann cells and neuronal cells but, in contrast to our findings, no significant 

difference in the amount of Schwann cells between keloids and the control groups (Deng et 

al., 2021a; Liu et al., 2021). We performed comprehensive bioinformatics analysis and found 

that the respective control conditions used were responsible for these contradictory findings. 

Deng et al. used normal scar as control condition for keloids (Deng et al., 2021a). This 

comparison is eminently reasonable, as the keloid has been classified for multiple years as 

abnormal scar (Limandjaja et al., 2020; Tan et al., 2019). However, this comparison puts the 

keloid inevitably in a developmental connex with normal, atrophic, or hypertrophic scars. This 

definition has been defused in the last years and keloids have been considered as fibrotic 

disorders of the skin and subcutaneous tissue rather than with scars. This rethinking relies 

on the fact that keloids also exhibit several cancer-like characteristics, including excessive, 

uncontrolled spreading into healthy tissue, regression failure and a high probability of 

recurrence after excision, that are untypical for all other scar types (Limandjaja et al., 2020; 

Tan et al., 2019). From the neoplastic point of view, the healthy skin would therefore serve as 

a better control for keloid research. Some studies, as the scRNAseq study conducted by Liu 

et al., utilized “healthy” skin adjacent to keloids as control tissue (Jumper et al., 2017; Liu et 

al., 2021). However, as multiple studies already described significant alterations in the skin 

close to the keloid compared to keloid but also to keloid-independent skin, this study setting 
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would require an additional control-condition separate from keloids (Appleton et al., 1996; 

Erdag et al., 2008; Hahn et al., 2013; Jiao et al., 2017; Liu et al., 2016). We further outlined 

this condition specific differences in our cross-study analysis. 

 

“To be, or not to be, that is the question” (Shakespeare, 1954) 

Our immunofluorescence confirmed increased amount of Schwann cells in keloids and 

uncovered their distinct spindle-shaped, elongated, narrow morphology aligned with the 

collagen bundles of the ECM. Their appearance closely resembles the shape of repair 

Schwann cells. However, repair Schwann cells are a well-defined subtype and characterized 

as Schwann cells arising from myelinating and non-myelinating Schwann cells, induced by 

an injury to support the neuronal repair and regeneration mechanisms (Jessen & Mirsky, 

2016). The conversion of mature Schwann cells into repair Schwann cells implies several 

cellular changes, including dedifferentiation, activation, proliferation and cell migration 

towards the opposite nerve stump (Jessen & Mirsky, 2016). Keloidal Schwann cells exhibited 

similar features, as we detected several genes associated with Schwann cell precursors or 

immature Schwann cells, including nestin, SOX10 and NGFR. We further uncovered an 

upregulation of genes associated with cell migration and activation and a downregulation of 

genes involved in myelination in keloidal Schwann cells. However, the term “repair Schwann 

cell” is designated specifically for Schwann cells that express a defined panel of genes 

important for neuronal regeneration (Jessen & Mirsky, 2016). This includes c-JUN as major 

key factor, orchestrating the whole dedifferentiation process and the thereby acquired ability 

of repair Schwann cells to support functional recovery and to prevent neuronal death (Arthur-

Farraj et al., 2012). C-Jun and also STAT3 were reported to maintain the repair phenotype in 

Schwann cells (Arthur-Farraj et al., 2012; Benito et al., 2017). This is factors are required as 

long as the regeneration process lasts (Jessen & Mirsky, 2016). Further marker genes 

important for the functions of repair Schwann cells are BDNF, GDNF, SHH, OLIG1, and 

artemin (Arthur-Farraj et al., 2012; Jessen & Mirsky, 2016). Keloidal Schwann cells, in 

contrast show many features similar to repair Schwann cells, but they do express c-JUN and 

STAT3 only in specific cluster areas and lack the remaining mentioned characteristic marker 

genes.  

 

“Who can control his fate?” (Shakespeare, 1975) 

As keloidal Schwann cells cannot be explicitly characterized as repair Schwann cells based 

on their transcriptional pattern, other potential options have to be considered. In the early 

investigation phase of repair Schwann cells, researchers discussed their findings with the 

possibility of more than one specific Schwann cell type arising from myelinating and non-
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myelinating Schwann cells after damage (Jessen et al., 2015). Comprehensive investigations 

of the function of repair Schwann cell with respect to their neuronal regeneration potential 

leaded to the strict definition of the repair subtype in association with the axonal recovery 

(Jessen & Mirsky, 2019b). Over time, the possibility of different repair-associated Schwann 

cell subtypes has been increasingly neglected. However, new insights on Schwann cells in 

conjunction with our results on keloidal Schwann cells revive this old discussion.  

Neuronal damage and the subsequent regeneration have been associated with time-

dependent changes in gene expression. In 2006, Bosse et al. performed a well-structured 

analysis of the transcriptional changes at different time points in the distal sciatic nerve 

induced by rupture (Bosse et al., 2006). They investigated gene regulation after 5-8 hours, 

and on day 2, 4, 7, 14 and 28 following nerve crushes (Bosse et al., 2006). Multiple cellular 

functions were associated with the regulated genes that have also been mentioned in context 

with repair Schwann cells, as morphogenesis, proliferation, and organization of cell structure 

(Bosse et al., 2006). As Schwann cells represent the leading cell population in the peripheral 

neuronal repair mechanisms, the majority of genetic changes detected in this bulk 

sequencing analysis has been set in context with their injury-induced conversion (Bosse et 

al., 2006). Juxtaposition of the temporally regulated genes with the according gene 

expression of keloidal Schwann cells revealed a set of concordant but also many divergent 

regulated genes. As the bulk sequencing analysis of Bosse et al. captured transcriptomic 

data from a cellular mix present in the distal nerve, it is not possible to assign these genetic 

changes to one specific dedifferentiation process of Schwann cells, which therefore leaves 

the possibility of more developmental tracks. 

Another study reported a potential variability of activated Schwann cells after peripheral 

nerve injury (Clements et al, 2017). Schwann cells from the distal stump revealed 

characteristic repair Schwann cell features (Clements et al., 2017). Repair Schwann cells, 

intended for the bridge formation between the neuronal stumps, altered their expression 

pattern in the moment when they entered the interstice (Clements et al., 2017). The bridge 

Schwann cells appeared to be more proliferative than the remaining repair Schwann cells. 

The repair Schwann cells on the other side revealed a genetic pattern associated with matrix 

production but also with immune signalling and inflammatory mechanisms (Clements et al., 

2017). These findings already indicate developmental differences of Schwann cells even in 

close contact to the disrupted nerve.  

Strikingly, activated Schwann cells have also been detected in larger distance from the axon. 

The research group of Parfejevs et al. even described a direct involvement of peripheral glia 

cells (Schwann cells) in wound healing process (Parfejevs et al., 2018). They showed a 

cellular reprogramming in addition with proliferation, and invasion of Schwann cells into the 

wound area (Parfejevs et al., 2018). These Schwann cells originate from myelinating and 
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non-myelinating Schwann cells in the skin. They support a proper wound closure and induce 

a TGF-ß1-mediated differentiation of fibroblasts into myofibroblasts (Parfejevs et al., 2018). 

TGF-ß1, one of the most powerful, pro-fibrotic proteins, has been identified to promote the 

proliferation and migration mechanisms of Schwann cells (Clements et al., 2017; D'Antonio 

et al., 2006). As extracellular TGF-ß1 increases after injury at the wound site, a potential 

promoting function in the invasion process of Schwann cells to this area is conceivable 

(Mahdavian Delavary et al., 2011). Another indication for an involvement of Schwann cells in 

the healing process of skin wounds has been made by Reinisch et al. (Reinisch et al, 2008). 

The authors showed a significantly lower amount of Schwann cells in patients suffering from 

diabetes mellitus (Reinisch et al., 2008). It is therefore possible that the formation of diabetic 

foot ulcers is affected by the lack of Schwann cells. However, further studies on the 

involvement of Schwann cells in the healing process of (diabetic) skin wounds in humans are 

still required. 

These findings indicate various Schwann cell subtypes arising from mature Schwann cells 

after injury. This assumption leads us further to question the actual terminology of “repair 

Schwann cells” so far associated with the neuronal regeneration, as Schwann cells involved 

in wound healing also contribute to a repair process. We therefore suggest a 

subcategorization of repair Schwann cells (e.g. fibrotic-repair Schwann cells, regenerative-

repair Schwann cells, or bridging-repair Schwann cells).  

 

“Our descent, then, is the origin of our evil passions” (Darwin, 1859) 

Keloidal Schwann cells exhibit an unusual persistence in the tissue, whereas activated and 

dedifferentiated Schwann cells seem to disappear over time after injury. Walison et al. 

mentioned re-differentiation into mature Schwann cells or a so far not investigated second, 

EMT-mediated mechanism as potential fading options for Schwann cells located in the 

wound area (Silva et al, 2018). This time-dependent decrease of Schwann cells at the wound 

site would be in line with our detected low amount of Schwann cells in mature scars. In 

contrast, repair Schwann cells closely located to the distal stump either differentiate back into 

their previous state induced by the contact of a vital axon or die (Sulaiman & Gordon, 2000). 

However, a conversion into another cell type might also be conceivable for regenerating-

repair Schwann cells. These results indicate a pathologic mechanism that forces Schwann 

cells to persist in the tissue and/or hinders their re-differentiation, cellular conversion, or 

death. 

The keloid is a continually growing pathologic tissue. As keloidal Schwann cells have been 

detected in the whole dermal area of the keloid, there has to be a solid source to provide this 

pathologic Schwann cells. One potential option might be the actively dividing Schwann cells 

detected within the keloid. However, the number of proliferating Schwann cells was rather 
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low and even not detectable in the keloid data generated by Deng et al. and Liu et al.. 

Another, more likely explanation might be that the spreading keloid constantly irritates the 

surrounding intact nerve fibres by alterations in tissue tension, the microenvironment and 

cellular composition, leading to a constant activation, dedifferentiation, and invasion of 

Schwann cells into the keloid area (Parfejevs et al., 2018). Our finding of an increased 

number of keloidal Schwann cells in the surrounding skin adjacent to keloids further supports 

this theory. 

From a developmental point of view, three options arise for keloidal Schwann cells. 

Pseudotime trajectories suggest that keloidal Schwann cells derive from myelinating and 

non-myelinating Schwann cells. This finding applies to both, repair and wound-invading 

Schwann cells. C-Jun and STAT3, as major factors in the development and for the 

maintenance of repair Schwann cells, are upregulated at the very branching point of the 

developmental track in the pseudotime and decrease in the direction of keloidal Schwann 

cells (Arthur-Farraj et al., 2012; Benito et al., 2017). This corresponds with the reported 

decrease of c-Jun following a long lack of axon contact in Schwann cells at the distal nerve 

stump (Gomez-Sanchez et al., 2017). Keloidal Schwann cells could therefore arise from 

repair Schwann cells in consequence of missing attachment to the nerve system and persist 

due to the pathologic microenvironment in the keloid. This theory requires a former presence 

of nerve fibres in the keloid area, as repair Schwann cells only arise from mature Schwann 

cells in the distal nerve stump and also only close to the site of neuronal damage. These 

requirements might be given in flat keloids which spread horizontal into the healthy skin, but 

not in raising, bulging keloids at the earlobe with limited healthy tissue to expand. For 

validation of this theory, single cell data obtained from classical repair Schwann cells would 

be necessary to allocate them in the pseudotime trajectory. In contrast, the wound-invading 

Schwann cells might be a more reasonable source for keloidal Schwann cells, as they 

migrate through the tissue and therefore would be able to invade the neoplastic area of the 

keloid or even establish the pathologic spreading (Parfejevs et al., 2018). This cellular 

migration is supposed to be triggered by the increased concentration of TGF-ß1 within the 

keloid (Clements et al., 2017; Peltonen et al, 1991). To proof this hypothetical relation, the 

transcriptional pattern of Schwann cells supporting a proper wound healing would be 

required. As third option, the keloidal Schwann cells could also arise as independent, 

pathologic subtype from mature Schwann cells triggered by genetic or external factors.  

 

“It was the nightingale and not the lark” (Shakespeare, 2000) 

In the last few years, scRNAseq uncovered multiple biological mechanisms. The method 

provides fundamental insights in the tissue composition and allows to identify so far 

unrecognized cellular subtypes. This promising approach has been applied to investigate 
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various tissue types in healthy and pathologic conditions. However, in case of the healthy 

skin varying factors of the method, cell isolation and the individual bioinformatics analyses, 

lead to considerable different results (He et al, 2020; Solé-Boldo et al, 2020; Tabib et al, 

2018; Vorstandlechner et al, 2020). This scientific discrepancy has been solved by combined 

bioinformatic analysis of all skin datasets that resulted in a more precise idea of the actual 

cellular environment present in the tissue (Ascensión et al, 2021). This complex exploration 

has verified the results of the distinct studies, but also reported a more general cellular 

classification, detectable throughout all independent datasets (Ascensión et al., 2021). 

Therefore, we aimed to strengthen the power of our findings through a screening including 

datasets generated by other research groups. 

Extensive bioinformatics analysis of multiple datasets from healthy skin, normal scar, keloid 

and keloid adjacent skin, generated by four independent research groups allowed us to verify 

the keloidal Schwann cells as a keloid-specific cell type in a large number of distinct keloid 

types. It further paved the way to define a characteristic set of 21 genes to reliable 

distinguish keloidal Schwann cells from myelinating and non-myelinating Schwann cells. This 

set includes genes associated with matrix formation (collagen type I alpha 1 [COL1A1], 

collagen type VII alpha 1 [COL7A1], elastin [ELN], IGFBP5, LOXL2, MMP15), cellular 

functions as differentiation and migration (CCN3, cysteine and glycine rich protein 2 

[CSRP2], insulin-like growth factor binding protein 3 [IGFBP3], LY6/PLAUR domain-

containing protein 1 [LYPD1], SPARC like 1 [SPARCL1], transforming growth factor beta 

induced [TGFBI], tropomyosin 2 [TPM2]), tumour functions (protein phosphatase 1 regulatory 

inhibitor subunit 14b [PPP1R14B], S100 calcium binding protein A16 [S100A16], transgelin 

[TAGLN], SH3 domain binding glutamate rich protein like 3 [SH3BGRL3]), but also genes 

associated with the neuronal system and nerve development (calbindin2 [CALB2], integrin 

subunit beta 1 [ITGB1], ectodermal-neural cortex 1 [ENC1], nestin [NES]) (Bernal & Arranz, 

2018; Camp & Wijesinghe, 2009; Chen et al, 2014a; Chen et al, 2014b; Deng et al, 2021b; 

Fang et al, 2021; Guo et al, 2018; Karamanos, 2019; Lei et al, 2016; Lloyd-Burton & 

Roskams, 2012; Masuda et al, 2018; Min et al, 2016; Nie et al, 2021; Park et al, 2014; Shin 

et al, 2017; Vallet & Ricard-Blum, 2019; Watanabe et al, 2013; Yager & Nwomeh, 1999; 

Yasuoka et al, 2006a; Yasuoka et al, 2009; Yasuoka et al, 2006b). The identified genetic 

pattern provides an expressive picture of the keloidal Schwann cells and their functions and 

further empowers to identify the potential presence of this profibrotic Schwann cell type in 

other fibrotic pathologies, as scleroderma, pulmonary and cardiac fibrosis. Keloidal Schwann 

cells further express a large number of other matrix factors as collagen type IV alpha 1 

[COL4A1], collagen type IV alpha 2 [COL4A2], collagen type V alpha 1 [COL5A1], collagen 

type V alpha 2 [COL5A2], collagen type V alpha 3 [COL5A3], collagen type VI alpha 1 

[COL6A1], collagen type VI alpha 2 [COL6A2], collagen type VIII alpha 1 [COL8A1], collagen 
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type XII alpha 1 [COL12A1] and tenascin (Theocharis et al., 2016). Some of these are 

exclusively expressed in keloidal Schwann cells compared to the remaining cell types. These 

findings suggest a crucial involvement of Schwann cells in the pathologic composition of the 

ECM in keloids. 

Schwann cells as pathologic force have already been described in other diseases. In the 

human skin for example, the cutaneous neurofibromatosis 1 (NF1) is driven by Schwann 

cells (Mazuelas et al, 2020). A combined analysis of Schwann cells from keloids, healthy skin 

and NF1 revealed almost no similarities between the detected Schwann cell populations. 

Pseudotime trajectory, however, set mature Schwann cells from the healthy skin as source 

for the aberrant Schwann cells in both pathologies. NF1-Schwann cells exhibited an 

inflammation-associated phenotype, whereas keloidal Schwann cells showed pro-fibrotic 

properties. These data highlight a decreased inflammatory component in keloid tissue that 

has also been proven in the general cellular setting. Inflammation has been mentioned as 

major impact factor on the extent of fibrosis, especially in hypertrophic scar formation 

(Niessen et al., 1999; van der Veer et al., 2009). Thereby, chronic inflammation has also 

been an often-discussed theory as driving force in keloids (Dong et al, 2013). Our results, 

however, stand in contrast to this theory and at least show no pro-active inflammatory 

process induced by Schwann cells or inflammatory cells as dendritic cells, macrophages or 

T-cells.  

 

“And where two raging fires meet together …” (Shakespeare, 1998) 

A high number of macrophages, as active cellular parts in inflammation and fibrosis, was 

detected in keloids. However, the majority of macrophages identified in our datasets were 

classified as M2 or at least M1/M2 intermediately polarized, indicating an involvement in the 

fibrotic pathomechanism of keloids. These findings confirm the previously reported general 

increase of macrophages with a high proportion of M2 macrophages in keloids (Bagabir et 

al., 2012a; Boyce et al, 2001; Jin et al, 2018). M2 macrophages display a key regulator in the 

dermal wound healing, especially in the remodelling phase (Goerdt & Orfanos, 1999; 

Greenlee-Wacker, 2016). They support the production of ECM and are even able to 

differentiate into myofibroblasts (Mahdavian Delavary et al., 2011; Wang et al, 2016). Repair 

Schwann cells on the other side are known to attract and interact with macrophages to 

support myelin degradation, vascularization, and matrix formation at the site of neuronal 

damage (Jessen & Mirsky, 2019a). We were able to identify a pro-fibrotic interaction of 

Schwann cells and macrophages in keloids. This crosstalk of Schwann cells and 

macrophages is established by the secretion of several factors and thereby induces a 

pathology-supporting environment similar to a vicious circle. This process involves well-

known proteins that typically occur in wound healing as CCL2, CCL3, TNF-α, MMP9, growth 
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arrest specific 6 (GAS6), but also CCN3, IGFBP3 and IGFBP5 as members of the 

characteristic expression pattern of keloidal Schwann cells.  

One of the strongest regulated genes in keloidal Schwann cells that is also a member of the 

cell-type specific expression panel was IGFBP5. Staining of this factor revealed an extensive 

presence of IGFBP5 in the extracellular space of keloids, presumably established exclusively 

by keloidal Schwann cells. IGFBP5 has been described as an important pro-fibrotic factor in 

wound healing of the skin (Yasuoka et al., 2009). It induces the invasion of fibroblasts, 

monocytes, NK cells and T cells to the site of injury (Yasuoka et al., 2009). An 

overexpression of IGFBP5 was shown to induce an increase in dermal thickness and 

thickness of collagen bundles, both characteristic attributes of keloids (Yasuoka et al., 

2006a). Strikingly, this study further revealed that IGFBP5 induced a general increase in 

collagen, fibronectin and myofibroblasts in the skin, which are further prominent 

characteristics of keloids (Yasuoka et al., 2006a). This insight alone suggests a significant 

contribution of the keloidal Schwann cells exclusively producing IGFBP5 to keloid formation. 

However, we identified several other factors involved in the pathologic characteristics of 

keloids. IGFBP3, another upregulated factor, has been shown to supply anti-inflammatory 

features (Min et al., 2016). CCN3, as member of the specific keloidal Schwann cell pattern, is 

involved in the attraction of macrophages and additionally promotes the change of M1 

macrophages into the M2 type (Chen et al., 2014b). However, the potential effect of CCN3 in 

keloids should not be attributed to Schwann cells only, as keloidal melanocytes also exhibit 

increased levels of CCN3.  

In 2009, Seki et al. showed a contribution of CCL2 in fibrotic process (Seki et al, 2009). 

CCL2, also known as MCP-1, is an important factor in healing process of the skin by 

recruiting cells to the wound site, especially monocytes/macrophages (Werner & Grose, 

2003). The significantly lower levels of CCL2 further might affect the attraction of M1 

polarized macrophages to the keloid. CCL2 has also been discussed as factor affecting the 

extent of scarring (Ferreira et al., 2006). However, this finding might depend rather on the 

cell types attracted by CCL2 than on a direct pro-fibrotic effect (Werner & Grose, 2003). This 

is also in line with the reported effect of CCL2 on the regulation of MMP9 (Robinson et al, 

2002). Robinson et al. uncovered the stimulating effects of CCL2, but also CCL3 and TNF-α, 

on the production of the ECM-degrading MMP9 in monocytes (Robinson et al., 2002). Our 

findings of decreased levels of CCL2, CCL3 and TNF-α in keloidal cells, in addition with 

significantly lower levels of MMP9, suggest a contribution of this mechanism to the 

pathologic ECM composition. The low level of MMP9 in keloids further affects the status of 

Schwann cells, as an increase of MMP9 has been described to prevent Schwann cells from 

proliferation and dedifferentiation (Kim et al, 2012). Reversely, a lack of MMP9 would 

therefore support the altered state of keloidal Schwann cells. Growth arrest-specific 6 protein 
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(GAS6) is another factor, that has been described in association with the cellular interaction 

of macrophages and Schwann cells (Stratton et al, 2018). GAS6 produced by macrophages 

promotes the re-differentiation of Schwann cells once neuronal repair is finished (Stratton et 

al., 2018). Decreased level of GAS6 on a genetic as well as a protein level, suggest this 

protein as another key player in the pathologic cellular interplay of keloids.  

Schwann cells in keloids further revealed a significant upregulation of tumor necrosis factor 

alpha-induced protein 6 (TNFAIP6). The product of TNFAIP6 is the hyaluronan-binding 

protein TNF-stimulated gene 6 (TSG-6) which has been shown to inhibit the migration of 

neutrophils, reduces the expression of neutrophil elastase and pro-inflammatory cytokines 

and inhibits the protease network, all features that lead to a decrease in inflammation 

(Getting et al, 2002; Lin et al, 2013; Nagyeri et al, 2011). TSG-6 additionally inhibits the 

STAT3 activity in macrophages to support a cellular M2 polarization (Mittal et al, 2016; Wan 

et al, 2020). An increase of TNFAIP6 in Schwann cells therefore might induce the reported 

reduced inflammation pattern and enhance M2 macrophage phenotype in keloids.  

Together, these findings point out a pathologic intermezzo of Schwann cells and 

macrophages resulting in a pro-fibrotic, ECM and cell-state modifying vicious circle. 

 

“We know what we are, but know not what we may be” (Shakespeare, 1954) 

The macrophage subset analysis further identified a macrophage subcluster, expressing 

genes characteristic for macrophages as well as fibroblasts. Macrophages are known to 

have the potential to trans-differentiate into mesenchymal cells. The conversion can be 

induced by IGFBP5, which is also one of the main factors produced by keloidal Schwann 

cells (Yasuoka et al., 2009). The finding of the MAC-FB cluster is equivalent to the SC-EC 

and SC-FB cell cluster, as scRNAseq analysis also identified specific Schwann cell cluster, 

with a transcriptional pattern typical for Schwann cells as well as for endothelial cells or 

fibroblasts. A potential of Schwann cells to convert into other cell types has already been 

reported (Jessen & Arthur-Farraj, 2019). Especially repair Schwann cells of the distal nerve 

stump revealed a high potential for EMT (Clements et al., 2017). We managed to verify the 

detected intermediate Schwann cell types by staining. Additionally, the presence of SC-EC in 

the cutaneous neurofibromatosis type 1 datasets encouraged these findings. However, a 

high amount of Schwann cell seems to be required for a cluster formation of these specific 

cellular subtypes in scRNAseq analysis, as datasets of Deng et al. as well as Liu et al. did 

not reveal any SC-FB or SC-EC cluster in case of a source exclusive analysis. Additionally, 

characteristic genes for EMT and endoMT-like conversion as TWIST1, zinc finger e-box 

binding homeobox 1 (ZEB1), ZEB2, snail family transcriptional repressor 2 (SLUG), snail 

family transcriptional repressor 1 (SNAIL) were not expressed in the mentioned Schwann 
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cell- or macrophage-intermediate cell cluster (Thiery et al, 2009). However, these findings 

would correspond to the increased cellular plasticity in keloid tissue. 

 

“There is nothing either good or bad …” (Shakespeare, 1954) 

The comparability of scRNAseq data sets and the findings still pose a challenging task. 

Different protocols for the preparation of single cells, together with changes in the 

sequencing method and the bioinformatic calculations in addition with donor variability affect 

the final data sets and the results and conclusions. Cellular heterogeneity of a certain tissue 

is also a varying component that should receive attention. In case of Schwann cells, a 

varying cellular density within the skin has been reported depending on the body site and 

potential pathologies (Reinisch & Tschachler, 2012). Already in 2017, van den Brink et al. 

elaborated on the detected cluster in their single cell analysis that is primarily a result of the 

dissociation protocol (van den Brink et al, 2017). Especially the duration of the dissociation 

step appeared to induce significant changes in the transcriptome of some cells, leading to a 

strong upregulation of IEG and HSP genes (van den Brink et al., 2017). These changes have 

been interpreted as partial activation of cells that reside in a quiescent state in tissue (van 

den Brink et al., 2017). Several further studies support the reported results of (Machado et al, 

2017; van Velthoven et al, 2017; Wu et al, 2019; Wu et al, 2017) dissociation-induced 

alterations in the cellular transcriptome (Adam et al, 2017; Bakken et al, 2018; Lacar et al, 

2016). Further important factors affecting the final single cell dataset are the tissue 

temperature during the dissociation step and the cellular condition prior the preservation of 

the transcriptome (fresh, cryopreserved or methanol-fixed) (Denisenko et al, 2020). However, 

depending on the cell type of interest, a faster and more intensive processing can also be 

recommended (Denisenko et al., 2020). Cryopreservation of cells results in a decrease of 

epithelial cells, whereas methanol fixation leads to an increase leakage of ambient RNA 

(Denisenko et al., 2020). All these findings indicate an individual adaption of protocols 

depending on the tissue type and intention of the study. The end result of this situation are 

multiple datasets, even for the same tissue type, due to individual approaches for 

preparation, dissociation and cellular preservation. (He et al., 2020; Solé-Boldo et al., 2020; 

Tabib et al., 2018; Vorstandlechner et al., 2020). However, as scRNAseq offers the 

opportunity to recombine published datasets to investigate new scientific questions, a 

standardisation of the tissue pre-procession step would be desirable but inevitably come 

along with limitations in certain cell type clusters. Machado et al. identified a genetic stress 

signature due to the dissociation step that allow to detect the biased results and to 

appropriately adapt the bioinformatics analysis (Machado et al, 2021). 

The whole skin dissociation kit is one of the most frequently used enzyme mixture for skin 

dissociation in scRNAseq experiments (Ascensión et al., 2021; Liu et al., 2021; 
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Vorstandlechner et al., 2021). As an alternative, tissue dissociation for two hours using 

dispase II and collagenase IV has been reported (Deng et al., 2021a). Regarding an optimal 

single cell RNA seq analysis with focus on keloidal Schwann cells, our study suggests the 

application of the whole skin dissociation kit for about two hours to isolate keloidal Schwann 

cells from the tissue. Focusing on myelinating and non-myelinating Schwann cells, our 

findings suggest a prolonged dissociation time to detach the myelinating and non-myelinating 

Schwann cells more efficiently from their axons. This results further supports previous 

findings from Weiss et al. (Weiss et al, 2018). The activation of Schwann cells located close 

and distal of the disrupted nerve occurs immediately after the neuronal damage, leading to a 

change in the transcriptional profile within hours (Rotshenker, 2011). We assume that the 

same transcriptional changes take place in the excised and dissociated skin tissue isolated 

for single cell analysis. Depending on the focus of the analysis, this situation confronts us 

with the fact that an isolation of a high amount of mature inactivated Schwann cells is almost 

impossible. Therefore, we must decide between a short-term tissue dissociation step with a 

low cellular yield and inactivated Schwann cells, or a long-term dissociation step with a high 

amount of Schwann cells but in an activated state. Nevertheless, the high numbers of 

keloidal Schwann cells in all datasets analysed here imply a much easier isolation of keloidal 

Schwann cells, probably due to their axon-independent presence in the tissue. The number 

of Schwann cells detected in normal scars varied between the tissue-specific and the 

comprehensive analysis. This could indicate an algorithmic phenomenon that cell types, 

present in a very low number are neglected in the cluster formation, while favouring the cell 

types present in large amounts. For the analysis of rare cell types, our study therefore 

suggests to involve at least one independent target cell-rich data set in the analysis for 

proper cluster formation. After cluster formation, the cell-rich dataset should be excluded 

from the analysis. However, cell characterisation must be proven afterwards as our results 

also displayed a certain amount of cluster contamination. 

In addition to the dataset variations caused by the tissue pre-processing, the bioinformatics 

analysis of scRNAseq data is still not standardized (Slovin et al, 2021). The average 

scRNAseq analysis usually consists of multiple consecutive steps as quality control, 

normalization, batch effect correction, visualization, unsupervised clustering but also cell 

cycle assignment, imputation and smoothing and projection. Following cluster annotation 

identification of differentially expressed genes comparing individual cluster combinations and 

subsets or pseudotime trajectory calculation can be performed (Andrews et al, 2021). 

Andrews et al. mentioned at least two potential tools for each step (Andrews et al., 2021). 

This indicates an almost unmanageable number of possible combinations for each analysis. 

In addition, multiple standard commands of each tool can be adopted and most of the tools 

are continuously developed. Varying UMAP plots or t-SNE graphs with varying numbers of 
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clusters, including over-clustering in the worst cases, and inconsistent distribution of detected 

cells are the consequence (Andrews et al., 2021). For this reason, reported results, 

especially in case of excessive clustering or sub setting should be examined critically. 

However, the spatial assignment of the main cell types and major transcriptional differences 

seem to be independent from the analytic approach. To address this issue, Slovin et al. 

recently initiated a trial to standardize analysis or at least to provide up-to-date, ready-to-use 

pipelines for scRNAseq (Slovin et al., 2021). Additionally, a verification of the transcriptional 

findings by a second method or on protein level is always recommendable. For our 

scRNAseq analysis, we applied Seurat as basic package, which is one of the best-

established tools for scRNAseq that additionally provides feasible vignettes for the data set 

investigation. 

  



  131 

3.1 Conclusion & future prospects 

We provide evidence for the presence of a so far undescribed Schwann cell subtype in the 

tissue of keloids. These keloidal Schwann cells reside within the pathological tissue in a 

single cellular manner without any contact to axons. The transcriptional profile of keloidal 

Schwann cells uncovered their dedifferentiated state with features highly associated with 

matrix formation. However, the keloidal Schwann cells show characteristics typical for the 

neuro-regenerative “repair Schwann cells”, as a lack of specific cell markers was noticed. 

Additional comparison with cutaneous neurofibroma datasets clarified a clear distinction of 

keloidal Schwann cells to the pathologic Schwann cells involved in neurofibroma type 1.  

In-depth analysis of keloidal Schwann cell and macrophages uncovered a potential 

interaction of both cell types, inducing a pathology-supporting state. We therefore suggest 

that the crosstalk of pro-fibrotic, keloidal Schwann cells and macrophages as a driving force 

in keloid formation and expansion. A comprehensive dataset evaluation obtained by three 

independent research groups, confirmed the increased number of pro-fibrotic Schwann cells 

in keloids and lead to the definition of a genetic panel specific for this cell type. Variable 

dataset combinations further highlight advantages and disadvantages of bioinformatics 

analysis of scRNAseq data and provides important information for the extraction of Schwann 

cells from skin tissue.  

Our work describes pro-fibrotic Schwann cells as new key-players in keloid formation. 

Treatments targeting keloidal Schwann cells to induce a reduction or re-differentiation of 

these cells might therefore suggest a novel approach for the therapy of keloids. Based on our 

findings, the next step would be to compare the keloidal Schwann cells with repair Schwann 

cells gained from the peripheral nerve collected at different time points. ScRNAseq datasets 

of these Schwann cells would help to point out transcriptional similarities and differences 

between these subtypes und to allocate the repair Schwann cells in a common pseudotime 

trajectory. Furthermore, an establishment of keloidal Schwann cell cultures is essential for a 

better understanding of their features and to evaluate intercellular effects in co-culture with 

other cells. These in vitro models would further support identification and development of 

effective treatments.  
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4 CHAPTER FOUR: MATERIALS & METHODS 

Materials and methods applied in this thesis are described in detail in the respective 

publications. 
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