

Cardiac and Thoracic Diagnosis & Regeneration

Secretome of apoptotic cells causes cardioprotection and inhibits ventricular remodeling after acute myocardial infarction

Doctoral viva Dr.med.univ. Michael Lichtenauer

Supervisor Univ.Doz. Dr.med.univ. Hendrik Jan Ankersmit

Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna – Austria Medical University Vienna, Department of Thoracic Surgery - Vienna – Austria

Cardiac and Thoracic Diagnosis & Regeneration

Table 1 Randomized trials in patients with acute myocardial infarction or ischemic heart failure								
Trial name	Number of patients	Cell type	Dose	Route of delivery	Timing of delivery	Primary end point	Comments	
Acute myocardia	al infarction							
BOOST	60	nBMC	128 ml	i.c.	Day 6±1	LVEF †	Effect diminished after 18 and 61 months	
REPAIR-AMI	187	mnBMC	50 ml	i.c.	Day 3–6	LVEF †	NA	
Leuven-AMI	66	mnBMC	130 ml	i.c.	Day 1	LVEF ↔	Regional contractility † Infarct size ↓	
ASTAMI	97	mnBMC	50 ml	i.c.	Day 6±1	$LVEF \leftrightarrow$	NA	
FINCELL	77	mnBMC	80 ml	i.c.	Day 3	LVEF †	NA	
REGENT	117	mnBMC (unselected vs CD34+/ CXCR4+)	50–70ml (unselected) 100–120ml (selected)	i.c.	Day 3–12	LVEF † with both cell types	NA	
HEBE	189	mnBMC vs mnPBC	60 ml (mnBMC) 150 ml (mnPBC)	i.c.	Day 3–8	Regional contractility ++	NA	
Ischemic heart f	failure							
MAGIC	97	SkM	400 or 800×10 ⁶	i.m.	>Week 4	LVEF ↔	LVEDV↓ LVESV↓	
TOPCARE-CHD	58	mnBMC vs CPC	50 ml	i.c.	Month 81±72	LVEF↑(mnBMC) LVEF ↔ (CPC)	NA	

Only patients with complete imaging studies are considered here. Dose refers to the average amount of bone marrow or peripheral blood that was harvested, or the number of transplanted skeletal myoblasts. Abbreviations: \downarrow , decreased; \uparrow , increased; \leftrightarrow , no significant change; CPC, circulating blood-derived progenitor cells; i.c., intracoronary; i.m., intramuscular; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; mnBMC, mononucleated bone marrow cells; mnPBC, mononucleated peripheral blood cells; NA, not applicable; nBMC, nucleated bone marrow cells; SkM, skeletal myoblasts.

Can Stem Cells Repair a Damaged Heart? . In *Stem Cell Information*. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services http://stemcells.nih.gov/info/scireport/chapter9

Cardiac and Thoracic Diagnosis & Regeneration

Myocardial Infarction Necrosis Attraction of immune cells Secretion of pro-inflammatory cytokines TNF-α IL-1 IL-6

The Dying Stem Cell Hypothesis

by Anker et al.

up to 25% of all transplanted cells are in the state of apoptosis

apoptotic cells induce transient immunosuppression

Christian

Cardiac and Thoracic Diagnosis & Regeneration

Doppler Laboratory

Results

Histology and Immunohistology 3 days after induction of MI

n=5-6 per group

Christian

Cardiac and Thoracic Diagnosis & Regeneration

Doppler Laboratory

Scar Dimension 6 Weeks after Induction of MI

IA-PBMC suspensions of irradiated apoptotic peripheral blood mononuclear cells

Cardiac and Thoracic Diagnosis & Regeneration

Results

Composition of Scar Tissue

for Cardiac and Thoracic Diagnosis & Regeneration

Results

Evaluation of Cardiac Function

Cardiac and Thoracic Diagnosis & Regeneration

Conclusion

Apoptotic ce

Administration of irradiated apoptotic PBMC after myocardial infarction induces ...

Reduction of Pro-inflammatory Signals

> II-1β ↓ IL-6 ↓

Up-regulation of Pro-angiogenic mediators

Interleukin-8个 MMPs 个 Increased Homing of CD68⁺ and c-kit⁺ Cells

Favorable Elastin/Collagen Ratio

Better Recovery of Cardiac Function

Ejection Fraction ↑ Shortening Fraction ↑ Dilation ↓

PBMC Suspension

Cardiac and Thoracic **Diagnosis & Regeneration**

Irradiation and Induction of

Apoptosis

control

Experimental Set-up

Suspensions of

apoptotic PBMC

Eur J Clin Invest. 2009 Jun;39(6):445-56. Irradiated cultured apoptotic peripheral blood mononuclear cells regenerate infarcted myocardium.

Cardiac and Thoracic Diagnosis & Regeneration

Production of APOSEC

(Cell culture supernatants of apoptotic PBMC)

Incubation for 24h Irradiation **Ficoll Cell Separation** Venous Blood Withdrawal PBMC Lyophilized Cell Culture **Supernatant** Centrifugation **Dialysis** Lyophilization - Aposec -: ... 0 Supernatant

Cell Pellet (is discarded)

PBMC peripheral blood mononuclear cells

for Cardiac and Thoracic Diagnosis & Regeneration **APOSEC**

Results after 72h

MEDIZINISCHE UNIVERSITÄT WIEN

Cardiac and Thoracic Diagnosis & Regeneration **APOSEC**

AMI – Small Animal Model

Results after 6 Weeks

Wien, 11.01.2012

Cardiac and Thoracic Diagnosis & Regeneration **APOSEC**

AMI – Large Animal Model

Cardiac and Thoracic Diagnosis & Regeneration

APOSEC

Reperfused AMI Large Animal Model

Results after 24 Hours

Cardiac and Thoracic Diagnosis & Regeneration

APOSEC

Reperfused AMI Large Animal Model

n=7-9 per group

MEDIZINISCHE UNIVERSITÄT WIEN

Cardiac and Thoracic Diagnosis & Regeneration **APOSEC**

Reperfused AMI Large Animal Model

Results MRI Analysis

Cardiac MRI evaluation 3 and 30 days after Ischemia/Reperfusion Injury

	Medium control	250,10 ⁶ apoptotic PBMC	1₊10 ⁹ apoptotic PBMC (high dose APOSEC, n=9)	
Parameters	(n=8)	(low dose APOSEC, n=7)		
-				
age (days)	90 ±0	90 ±0 ns	90 ±0 ns	
LVEDV (ml)	67·59 ±2·7	64·19 ±5·4 ns	63.73 ±1.6 ns	
LVESV(ml)	38·42 ±2·5	35.96 ±3.0 ns	33.93 ±2.1 ns	
LVSV (ml)	29·17 ±1·3	28.23 ±3.2 ns	29.77 ±1.8 ns	
LVEF (%)	43·38 ±1.9	43.63 ±2.8 ns	46.65 ±2.9 ns	
HR/min.	111 ±6	109 ±5 ns	111 ±13 ns	
CO (I/min.)	3·24 ±0·1	3.03 ±0.3 ns	3.28 ±0.3 ns	
CI (I/min/m ²)	3.64 ±0.14	3.59 ±0.4 ns	3.82 ±0.37 ns	
Infarct %	18·17 ±1·7	14.01±1.9 ns	8.66 ±1.5 **	
age (days)	120 ±0	120 ±0 ns	120 ±0 ns	
LVEDV (ml)	54·74 ±4·1	53·43 ±3·5 ns	65.99 ±3.5 ns	
LVESV(ml)	32.93 +4.0	31.89 +3.2 ns	28.71 +3.5 ns	
LVSV (ml)	21.84 ±1.8	21.54 ±2.0 ns	37·29 ±1.7 ***	
LVEF (%)	40.54 ±3.6	40.64 ±3.5 ns	57·05 ±3·3 **	
HR/min.	114 ±7	108 ±8 <i>ns</i>	107 ±5 ns	
CO (I/min.)	2·44 ±0·1	2.28 ±0.1 ns	3.98 ±0.2 ***	
CI (I/min/m ²)	2.46 ±0.12	2.40 ±0.15 ns	3·51 ±0·15 ***	
Infarct %	12.60 ±1.3	11.50 ±1.6 ns	6·92 ±1·4 *	

MEDIZINISCHE UNIVERSITÄT WIEN

for Cardiac and Thoracic Diagnosis & Regeneration

Analysis of Protein Content

of APOSEC MEDIZINISCHE UNIVERSITÄT WIEN

(Cell culture supernatants of apoptotic PBMC)

Membran Array – Angiogenic Factors

Cardiac and Thoracic Diagnosis & Regeneration **APOSEC**

Mechanism of Action

Cell Starvation Assay

MEDIZINISCHE UNIVERSITAT WIEN

n=3

Christian

Laboratory

Diagnosis & Regeneration

Doppler

Cardiac and Thoracic

APOSEC

Mechanism of Action

Cell Culture of human Cardiomyocytes – Factor Inhibtion Assay

MEDIZINISCHE

UNIVERSITÄT WIEN

Cardiac and Thoracic Diagnosis & Regeneration

Special thanks

Christian Doppler Laboratory

for Cardiac and Thoracic Diagnosis and Regeneration

Hendrik Jan Ankersmit Konrad Hoetzenecker Stefan Hacker Andreas Mangold Stefanie Nickl Tina Niederpold Matthias Zimmermann Andreas Mitterbauer Gregor Werba Moritz Rauch

Ludwig Boltzmann Cluster for Cardiovascular Research

Bruno Karl Podesser Wolfgang Dietl Andrea Baumgartner Matthias Hasun Christoph Inci

Department of Dermatology

Michael Mildner

Department of Cardiology

Mariann Gyoengyoesi

MEDIZINISCHE UNIVERSITAT WIEN