PHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS

Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome

Elizabeth A. Middleton,^{1,2} Xue-Yan He,³ Frederik Denorme,¹ Robert A. Campbell,^{1,2} David Ng,³ Steven P. Salvatore,^{4,5} Maria Mostyka,⁴ Amelia Baxter-Stoltzfus,⁴ Alain C. Borczuk,^{4,5} Massimo Loda,^{4,5} Mark J. Cody,^{1,6} Bhanu Kanth Manne,¹ Irina Portier,¹ Estelle S. Harris,² Aaron C. Petrey,^{1,7} Ellen J. Beswick,² Aleah F. Caulin,⁸ Anthony Iovino,^{6,8} Lisa M. Abegglen,^{6,8} Andrew S. Weyrich,^{1,2} Matthew T. Rondina,^{1,2,9,10} Mikala Egeblad,³ Joshua D. Schiffman,^{1,6,8,*} and Christian Con Yost^{1,6,*}

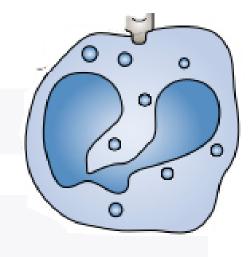
Outline

- Introduction
 - Neutrophils & Neutrophil extracellular traps (NETs)
- Materials & Methods
- Results
- Discussion

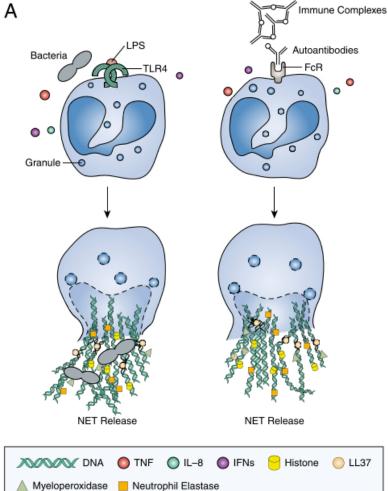
Neutrophils

polymorphonuclear leukocyte (PMN)

Most abundant granulocyte


enriched cytoplasm with granules & secretory vesicles

typically the first leukocyte recruited to inflammatory site

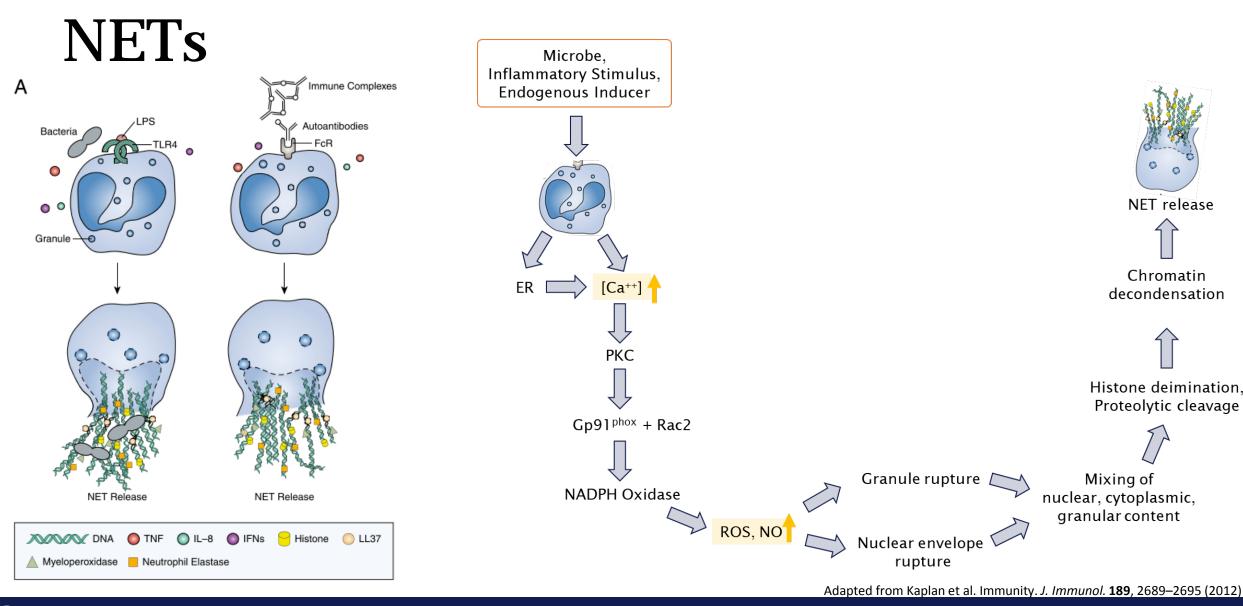

capable of eliminating pathogens by multiple mechanisms

Adapted from Kaplan et al. Immunity. J. Immunol. 189, 2689–2695 (2012)

Neutrophil Extracellular Traps (NETs)

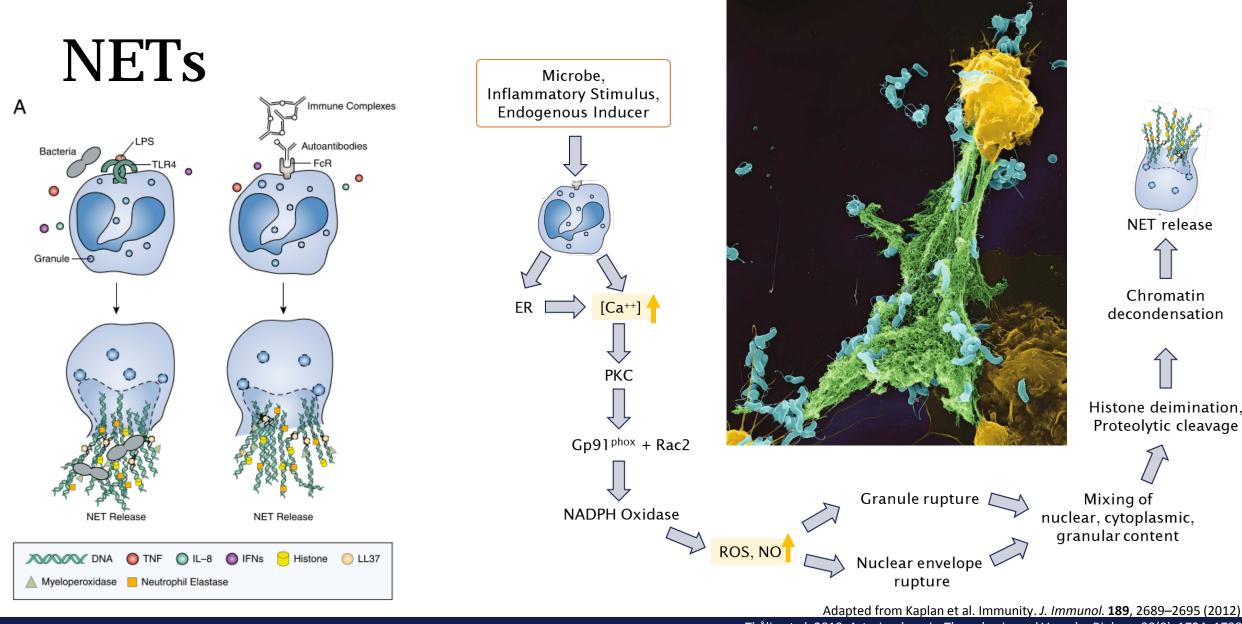
Stimuli:

- Microbes & microbial products
- Immune complexes
- Autoantibodies
- A wide range of cytokines (e.g. IL-8, TNF, type 1 & 2 IFN)
- ..


Binding via:

- FC receptors
- Complement receptors
- GPCRs
 - Formyl-peptide receptors
 - Chemoattractant receptors
- Adhesion receptors
 - selectins/selectin ligands
 - integrins

- Cytokine receptors
 - Type 1 & Type 2
 - IL1R family
 - TNFR family
- Innate immune receptors
 - TLRs (all except TLR3)
 - C-type lectins
 - NOD-like receptors
 - RIG-like receptors



Klas Katharina

MEDICAL UNIVERSITY OF VIENNA

Klas Katharina

Klas Katharina

MEDICAL UNIVERSITY OF VIENNA

Neutrophils & NETs

- Platelet triggered NETosis
 - \rightarrow may become dysregulated
 - → NET mediated tissue damage, hypercoagulability, chronic inflammatory disease

Study design

- 33 COVID-19 patients
 + 17 age- & sex-matched healthy adults
- Patients admitted to hospital with respiratory symptoms and SARS-CoV2⁺ PCR test
- Investigation of pathogensis COVID-19-related sepsis, ARDS, thrombosis
 → incl. NET formation & plateletneutrophil interactions

Study Patients

- Enrolement criteria
 - >18 years
 - Respiratory symptoms (cough, shortness of breath) or fever
 - Hospital admission
 - SARS-CoV2+ PCR test
 - Informed consent
- 5 convalescing COVID-19 patients
 - 3 not from enrolled cohort
 - 2 from cohort
 - Blood collection 4-6 weeks post positive PCR test

Clinical characteristics of healthy donors and hospitalized patients with COVID-19

Characteristics	Healthy donors (n = 17)	Hospitalized		P
		Non-ICU COVID-19 infection (n = 19)	ICU COVID-19 infection (n = 14)	
Age, mean ± SD, y	50.6 ± 17.6	48.2 ± 13.6	64.5 ± 13.7	.008
Male	50	52.6	57.1	<mark>.</mark> 94
Hispanic/Latino/African American	11.8	31.6	42.9	.15
BMI (kg/m²), mean ± SD		33.9 ± 9.6	30.5 ± 9.4	.43
Diabetes		31.6	57.1	.15
Hypertension		36.8	42.9	.74
Chronic lung disease		26.3	42.9	.33
SOFA score, mean ± SD		1.6 ± 1.3	4.6 ± 1.2	<.0001
ARDS		10.5	92.9	<.0001
Mechanical ventilation		0.0	50.0	<.0001
28-d survival		100	71.4	.011
WBC (k/uL), mean ± SD		6.1 ± 2.4	8.3 ± 2.3	.02
Platelet count (k/uL), mean \pm SD		245 ± 107	244 ± 56	.97

Unless otherwise noted, data are percentages (%).

BMI, body mass index; SOFA, Sequential Organ Failure Assessment; WBC, white blood cell count.

Clinical course of autopsy patients who died from COVID-19 ARDS

Case 1: Older patient with multiple preexisting medical conditions

This 64-year-old male of Hispanic decent with diabetes, end-stage renal disease on hemodialysis, heart failure, and hepatitis C on ledipasvir/sofosbuvir therapy developed fever after presenting with respiratory distress to the emergency room. SARS-CoV-2 PCR from a nasopharyngeal swab obtained prior to his demise was positive. He declined medical intervention, including intubation, and died within 5 hours of presentation. There was no clinical evidence of sepsis in this patient, premortem bacterial cultures were negative, and autopsy was conducted within 5 hours of his death. Neutrophil infiltration, but without immunofluorescence testing for NETs or platelets, of this patient's autopsy lung sample has been published.⁴

Case 2: Elderly with preexisting medical conditions and ARDS

This 73-year-old male with chronic obstructive pulmonary disease and diabetes developed ARDS with an arterial oxygen saturation of 50%. He was intubated and treated empirically with ceftriaxone, azithromycin, and doxycycline for community-acquired pneumonia with negative blood cultures. His chest radiograph showed diffuse patchy airspace opacification. SARS-CoV-2 PCR from a nasopharyngeal swab was positive. The patient required mechanical ventilation and experienced acute renal failure (creatinine increased from 2.4 to 4.1 mg/dL). His white blood cell count increased as did his absolute neutrophil count. He was lymphopenic. He remained afebrile with a temperature maximum of 37.8°C. He expired on hospital day 5 from COVID-19-related ARDS.

Case 3: Elderly with multiple preexisting medical conditions and cardiac arrest

This 71-year-old male with hypertension, hyperlipidemia, coronary artery disease, and diabetes had cough and fever for several days prior to a witnessed sudden cardiac arrest at home. His wife was a known SARS-CoV-2⁺ household exposure with minimal symptoms, similar to the patient's initial presentation. Despite attempts at cardiopulmonary resuscitation by emergency medical personal in transit and in the emergency room, he expired. A SARS-CoV-2 nasopharyngeal swab was positive in the emergency room prior to his demise.

- MPO-DNA ELISA
 - Plasma and tracheal aspirate
 - Capture: Anti-human MPO primary antibody
 - Detection: anti-DANN primary antibody
- PMN isolation
 - EasySep Direct Human Neutrophil Isolation Kit (STEMCELL)
- Neutrophil granularity quantification (n=4)
 - Flow Cytometry
 - Anti-human CD66b-V450 and SSC

- Immunofluorescence staining for NETs and platelets
 - Paraffin-embedded autopsy lung specimens from 3 COVID-19 cases
 - Commercially available healthy tissue as control
 - Mouse-anti-human MPO
 - Rabbit-anti-human citH3
 - Mouse-anti-human PF4
- Plasma coagulation factor assays
 - ELISA: sPF4, RANTES, von Willebrand Factor (VWF) antigen, D-dimers

- Platelet-neutrophil aggregates
 - FACs
 - Platelets: CD41-APC
 - PMNs: CD66b-V450
- Cytokine array
 - Multiplex bead array for IL-8 & IL-6
- nNIF peptide synthesis
 - neonatal NET-inhibitory factor in umbilical cord blood
 - inhibits key terminal events in NET formation, including (PAD4) activity, nuclear histone citrullination, & nuclear decondensation

Increased plasma NETs correlate with increased COVID-19 severity

normal lung COVID-19 Case #1 COVID-19 Case #2 COVID-19 Case #3

Myeloperoxidase CitH3 DAP

Robust PMN infiltration in

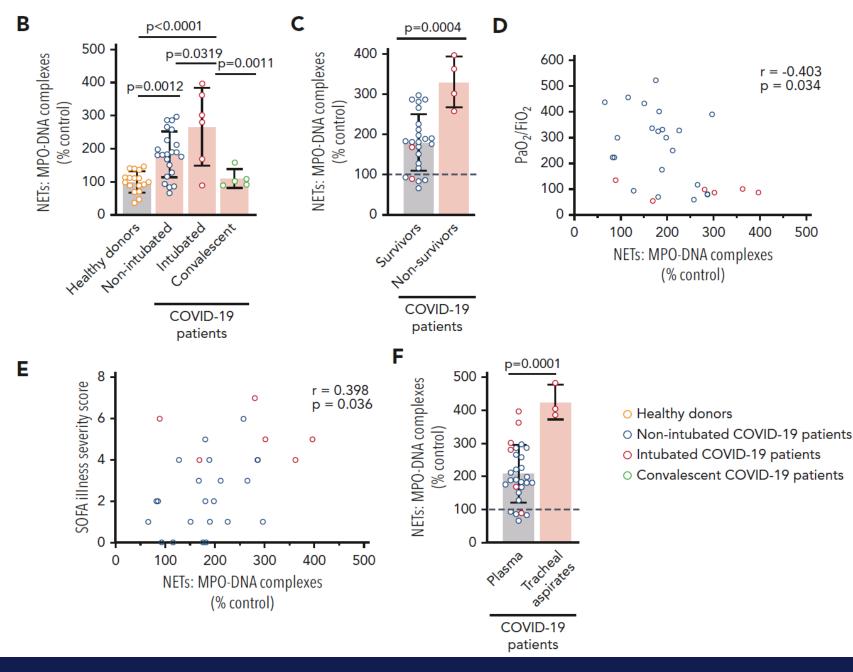
Numerous citH3+ MPO+

Rare latticees of

extracellular DNA

lung based on MPO staining

 \bullet


ullet

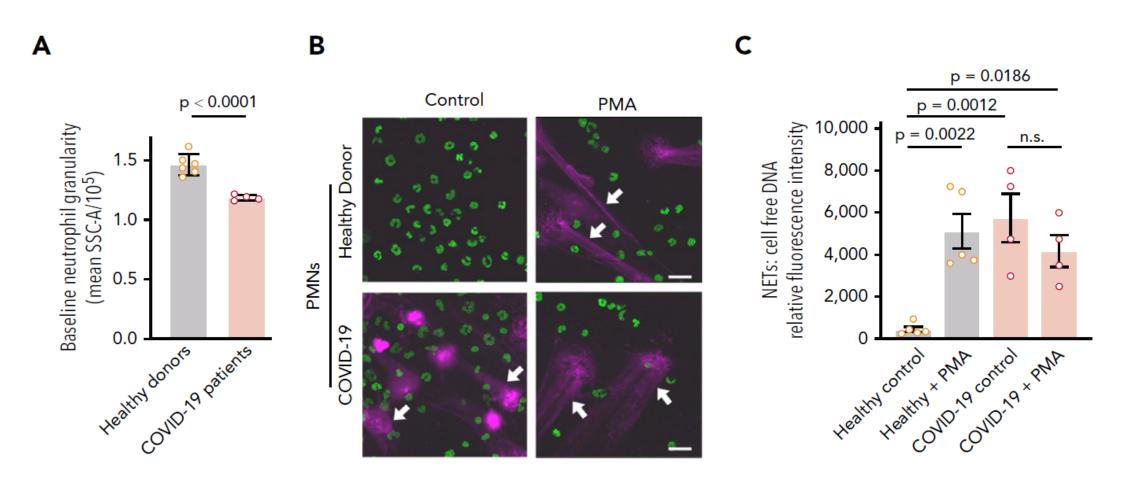
 \bullet

PMNs

В

- Sign. Increase in plasma NET levels in
 - Non-intubated
 - (endotracheally) intubated
- Upon recovery: plasma NET levels decreased to similar levels as healthy donors
- С
- Plasma NET levels sign. higher in non-survivors compared
- D
- PaO2/FiO2 varies inversely with plasma NETs
- Ε
- Plasma NETs correlate directly with SOFA score
- F
- Sign. Increased NET levels in tracheal aspirates

COVID-19 PMNs demonstrate increased activation and NETs at baseline


COVID-19 PMNs additionally fail to respond to NET-inducing stimuli with increased NET formation

- Α
- Sign. Decrease in PMN granularity in COVID-19 PMNs

B & C

• PMA failed to further increase NET formation

NETs associate with microthrombi formation & platelet deposition

Α

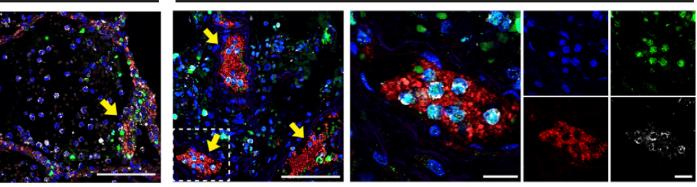
- NETs localized in structures consistent with blood vessels
- Co-localization of citH3⁺ neutrophils with PF4⁺ platelets
- В
- Sign. Higher levels of circulating platelet-neutrophil aggregates in COVID-19 patients

C & D

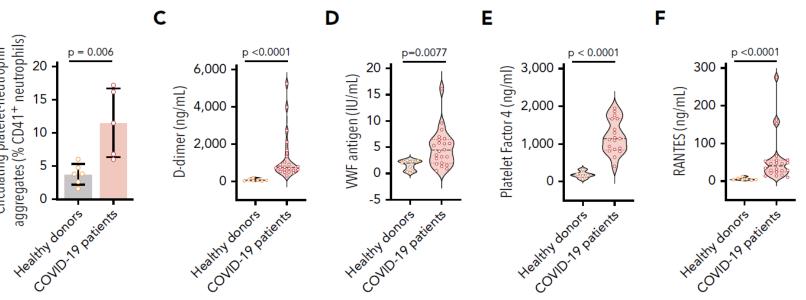
 Soluble markers of thrombosis (D-dimer and VWF) sing. Elevated

E & F

 Sign. Elevated levels of soluble plateletderived factors (triggering NETosis); PF4, RANTES (CCL5)


COVID-19 Case #1

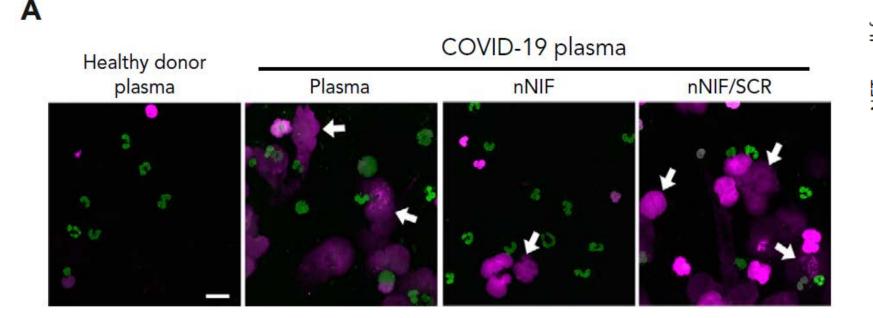
Α


В

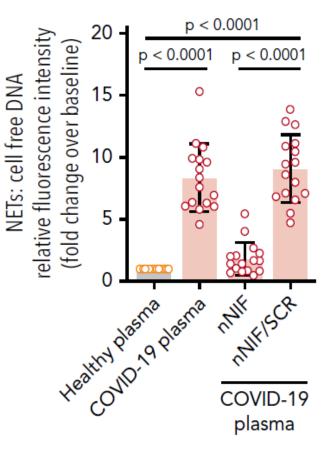
Circulating platelet-neutrophil

COVID-19 Case #3

Platelet Factor 4 Myeloperoxidase Citrullinated Histone H3 DAPI



COVID-19 plasma induces NET formation in healthy PMNs


nNIF blocks NETs induced by soluble factors in plasma from COVID-19 patients

- NET formation of healthy PMNs upon incubation with COVID-19 plasma
- nNIF inhibits COVID-19 plasma-induced NET formation

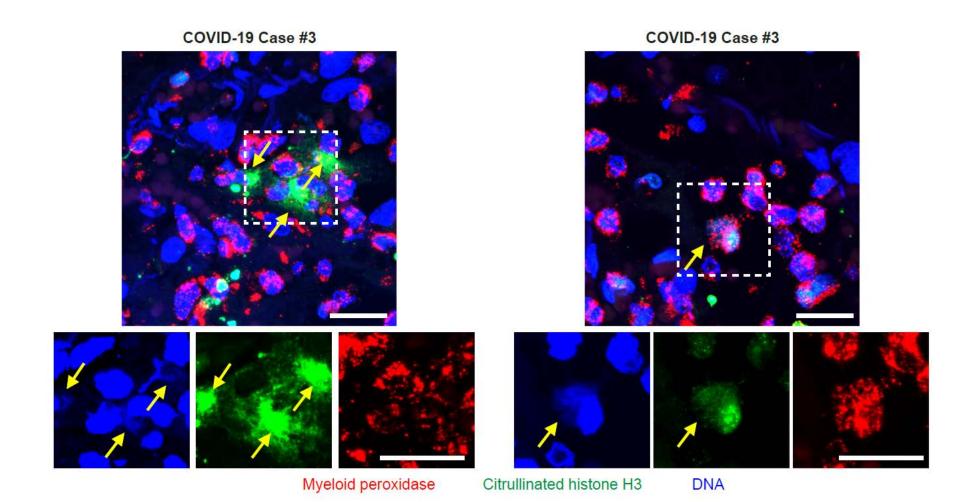
Discussion

Klas Katharina

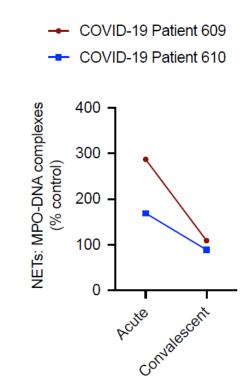
Discussion

- Highest levels of circulating NETs in COVID-19 patients with endotracheal intubation
- Infiltration of platelet colocalization with citH3+ neutrophils in pulmonary microthrombi (patients died from COVID-19)
- 50-fold increase in NET release in COVID-19 PMNs

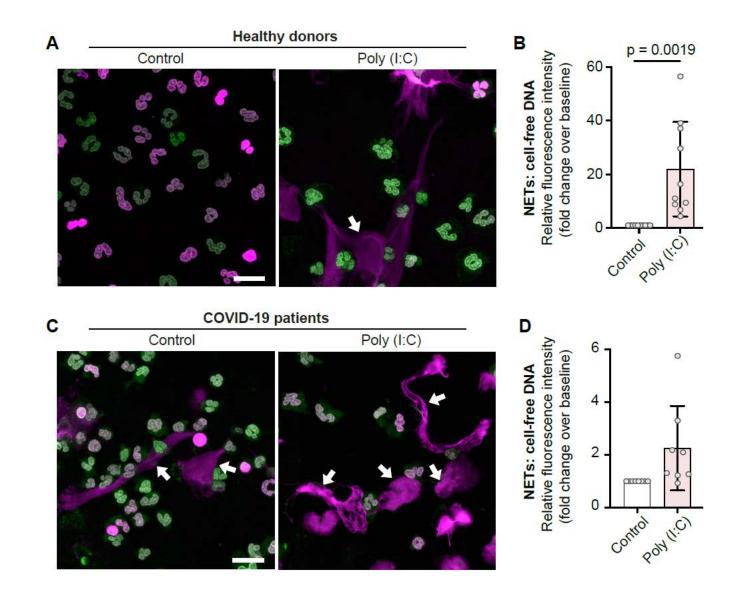
Discussion


- Robust NET induction in healthy PMNs by COVID-19 plasma
- NET levels may return to normal in convalescent patients
- Elevated levels of PF4 & platelet-neutrophil aggregates in COVID-19 patients
- High levels of thrombosis associated markers

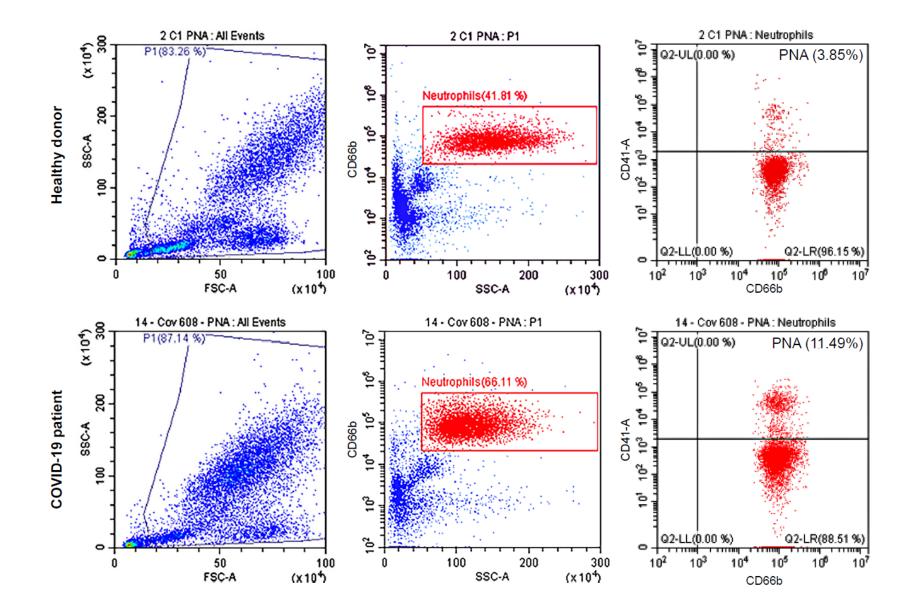
supplementary



Klas Katharina



MEDICAL UNIVERSITY OF VIENNA


Klas Katharina

Klas Katharina