

for Cardiac and Thoracic Diagnosis & Regeneration

Restoring Immune Function of Tumor-Specific CD4⁺ T Cells during Recurrence of Melanoma

Goding SR et al. J Immunol 2013; 190:4899-4909

C. Nikolowsky

Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration

Medical University Vienna

Vienna 2013

Background

- Melanoma
 - Stages and Therapy
- Adoptive T Cell Transfer
- Reccurence
 - Tregs
 - PD-1
 - LAG-3
 - TIGIT
 - TIM-3

Cardiac and Thoracic Diagnosis & Regeneration

Melanoma

- Surgery
 - with or without lymph node sampling
- Chemotherapy (CHT)
 - systemic or regional
- Biologic therapy
 - IFN, IL-2, TNF
- Targeted therapy
 - mAbs, Signal transduction inhibitors,
 Oncolytic viruses, Angiogenesis inhibitors
- Radiation therapy

^{for} Cardiac and Thoracic Diagnosis & Regeneration

Melanoma

- Surgery
- Stage I & II (invasive melanoma)
 - Surgery + lymph node sampling
- Stage III (regional metastasis)
 - Surgery + biologic therapy
 - Targeted therapy + regional CHT (+ biologic therapy)
- Stage IV (distant metastasis) and Reccurent Melanoma
 - Targeted therapy
 - Biologic therapy
 - CHT
 - Palliative therapy (Surgery, Radiotherapy)

Cardiac and Thoracic Diagnosis & Regeneration Adoptive Cell Transfer (ACT)

- Tumor-Specific T cells
 - Tumor-infiltrating Lymphocytes (TIL)
 - genetically engineered T cells
- In vitro reproduction
- Lymphodepletion
- Re-Infusion

Jennifer Makalowski and Hinrich Abken (2013). Adoptive Cell Therapy of Melanoma: The Challenges of Targeting the Beating Heart, Melanoma - From Early Detection to Treatment, Dr. Ht Duc (Ed.), ISBN: 978-953-51-0961-7, InTech, DOI: 10.5772/53619.

for Cardiac and Thoracic Diagnosis & Regeneration

Adoptive Cell Transfer

Jennifer Makalowski and Hinrich Abken (2013). Adoptive Cell Therapy of Melanoma: The Challenges of Targeting the Beating Heart, Melanoma - From Early Detection to Treatment, Dr. Ht Duc (Ed.), ISBN: 978-953-51-0961-7, InTech, DOI: 10.5772/53619.

Vienna 2013

Doppler Laboratory

Christian

Cardiac and Thoracic Diagnosis & Regeneration Adoptive Cell Transfer (ACT)

- Effective as primary treatment
 - under regulatory T cell (Treg) depletion
- Less effective for treatment of recurring melanoma
 - effector T cell (T_E) inhibiting molecules
 - Programmed cell death protein 1 (PD-1)
 - Lymphocyte-activation gene 3 (*LAG-3*)
 - T cell immunoreceptor with Ig and ITIM domains (*TIGIT*)
 - T cell immunoglobulin mucin-3 (TIM-3)

Cardiac and Thoracic Diagnosis & Regeneration

Materials and

Methods

- Mice
 - Tyrp1^{B-w}RAG^{-/-} TRP-1-specific CD4⁺ TCR transgenic mice
 - were crossed with
 - Foxp3-DTR mice
 - to create
 - tyrp1^{B-w}RAG^{-/-} Foxp3-DTR TRP-1-specific CD4⁺ TCR transgenic mice
 - no CD8+ T cells
 - T cell receptor is TRP-1 specific
 - Tregs can be inactivated with DT
 - C57BL/6 RAG^{-/-} mice

Materials and Methods

- Tumor Line
 - B16.F10 (H-2^b): TRP-1⁺ spontaneous murine melanoma
 - injected s.c. at 2x10⁵ cells/mouse

Cardiac and Thoracic Diagnosis & Regeneration

Results

- Tumor-specific Foxp3⁺ Tregs expand during recurrence
 - CD57BL/6 mice
 - ACT 10 days after tumor inoculation
 - Recurrence variable (30 to 120 d)

Cardiac and Thoracic Diagnosis & Regeneration

Results

- Tumor-specific Foxp3+ Tregs expand during recurrence
 - higher levels of Tregs in mice with relapse

Cardiac and Thoracic Diagnosis & Regeneration

Results

- Tumor-specific Foxp3+^C Tregs expand during recurrence
 - higher levels of Tregs in mice with relapse
 - T_E approximately the same

Christian

Doppler

Cardiac and Thoracic Diagnosis & Regeneration

Laboratory

Results

 Depletion of tumor-specific Foxp3⁺ T cells does not treat recurrence

Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

Christian

Results

- Depletion of tumorspecific Foxp3+ T cells does not treat recurrence
 - It also doesn't prevent it

Results

- Depletion of tumor-specific Foxp3+ T cells does not treat recurrence
 - Differences in IFN and TNF production
 suggest intrinsic dysfunction of CD4⁺ T_E

Results

 Tumor-specific CD4+ T cells become exhausted during cancer recurrence

Results

• Tumor-specific CD4+ T cells become exhausted during cancer recurrence

Results

• Tumor-specific CD4+ T cells become exhausted during cancer recurrence

Results

• Tumor-specific CD4+ T cells become exhausted during cancer recurrence

Results

 PD-L1-specific blockade restores antitumor immunity and treats recurrence only in combination with tumor-specific Treg ablation

Christian Doppler

Laboratory

Results

• PD-L1-specific blockade restores antitumor immunity and treats recurrence only in combination with tumor-specific Treg ablation

Results

 PD-L1-specific blockade restores antitumor immunity and treats recurrence only in combination with tumor-specific Treg ablation

Results

 PD-L1-specific blockade restores antitumor immunity and treats recurrence only in combination with tumor-specific Treg ablation

Results

 Disparate treatment requirements between primary and recurrent cancer

Results

 Simultaneous blockade of PD-L1 and LAG-3 in vivo treats recurring tumors, overcoming the necessity to deplete tumor-specific Tregs

Results

 Simultaneous blockade of PD-L1 and LAG-3 in vivo treats recurring tumors, overcoming the necessity to deplete tumor-specific Tregs

Results

 Simultaneous blockade of PD-L1 and LAG-3 in vivo treats recurring tumors, overcoming the necessity to deplete tumor-specific Tregs

Christian

Laboratorv

Discussion

- Treg-mediated suppression and chronic exhaustion of CD4⁺ T cells are are intertwined during melanoma recurrence.
- Suppression of antitumor immunity is not Treg dependent
- Anti-LAG-3 mAbs have the same effect as Treg depletion
- Impact of endogenous Tregs, B cells and CD8+ T cells?