

Cardiac and Thoracic Diagnosis & Regeneration

An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage

Aaron M Newman1,2,7, Scott V Bratman1,3,7, Jacqueline To3, Jacob F Wynne3, Neville C W Eclov3, Leslie A Modlin3, Chih Long Liu1,2, Joel W Neal2, Heather A Wakelee2, Robert E Merritt4, Joseph B Shrager4, Billy W Loo Jr3, Ash A Alizadeh1,2,5 & Maximilian Diehn1,3,6

Published in April, 2014 in Nature Medicine

Content

- Stages of NSCLC
- Introduction
- Design for a CAPP-Seq Selector for NSCLC
- Performance assessment
- Somatic mutation detection
- Tumor burden quantitation
- Conclusion

stages in NSCLC

- occult (hidden) stage
- stage 0 (carcinoma in situ)
- stage I

Christian Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

- stage II
- stage III
 - stage IIIa/stage IIIb
- stage IV

- occult (hiden) stage:
 - cancer cannot be seen by imaging/ bronchoscopy
 - cancer cells are found in sputum/or bronchial washing

- stage 0 (carcinoma in situ):
 - abnormal cells are found in the airways
 - cells may become cancer
 - \rightarrow spread into nearby normal tissue

Doppler

Cardiac and Thoracic Diagnosis & Regeneration

Laboratory

stage IIIA

divided into three sections depending on

- the size of the tumor
- where the tumor is found
- which lymph nodes have cancer

Introduction

Circulating tumor DNA (<u>ctDNA</u>) = promising biomarker for noninvasive assessment of cancer burden

existing ctDNA detection methods have insufficient sensitivity:

- --*PCR-based assays* (majority of patients lack mutations in recurrent point mutations as KRAS/EGFR)
- --parallel sequencing (modest sensitivity)

they developed a cancer personalized profilying by deep sequencing CAPP-Seq selector= biotinylated DNA oligonucleotides

 \rightarrow target mutated regions in cancer

CAPP-Seq overcomes this limitations

Doppler

Cardiac and Thoracic Diagnosis & Regeneration

Laboratory

Introduction

1.)CAPP selector applied to tumor DNA

\rightarrow to identify a patients cancer-specific genetic aberations

 2.) directly applied to circulating DNA quantify it

Cardiac and Thoracic Diagnosis & Regeneration

Design for a CAPP-Seq Selector for NSCLC

1.) including Exons covering recurrent mutations in potentional driver genes

2.) addition of Exons containing recurrent SNVs (using WES data from TCGA (lung cancer/squamos cell carcinom)

3.)addition of exons/introns harbouring breakpoints in rearrangements

involving ALK, ROS1, RET =tyrosine kinase genes

Cardiac and Thoracic Diagnosis & Regeneration

Statistical enrichment of recurrently mutated NSCLC exons

- RI=number of patients with somatic mutations per kilobase of an exon
- Known and suspected NSLC drivers are highl enriched at RI 30

Cardiac and Thoracic Diagnosis & Regeneration

Design for a CAPP-Seq Selector for NSCLC

- 1.) including Exons covering recurrent mutations in potentional driver genes
- 2.) adding of Exons containing recurrent SNVs (using WES data from TCGA (lung cancer/squamos cell carcinom)
- 3.)adding of exons/introns harbouring breakpoints in rearrangements

involving ALK, ROS1, RET=tyrosine kinase genes

for Cardiac and Thoracic Diagnosis & Regeneration

 Selector targets: 521 Exons/13 introns from139 recurrently mutated genes in total kovering 125 kb

- Small target(0.004% of human genom)
 - Selector identifies a median of 4 SNV
 - Covers 96% of patients with lung adenocarcinom/squamous cell carcinoma

Independent cohort

To validate the number of mutations covered per tumor:
 ->examined the selector region in WES data: independent cohort of 183 patients with lung adenocarcinoma

Selector covered 88% of patients with a median of four SNVs per Patient.

Better than random sampling from the exome

Cardiac and Thoracic Diagnosis & Regeneration

Performance assassment

 Performed deep sequencing with NSCLC selector to achieve 10 000 * coverage

profiled a total of 90 samples:

- two NSCLC cell lines
- 17 primary tumor samples with matched peripheral blood leukocytes (PBLs)
- 40 plasma samples from 18 human subjects,
 (5 healthy adults and 13 patients with NSCLC)

- They applied selector to circulating DNA purified from healthy control plasma
 - Observed capture of genomic DNA
- Sequenced plasma DNA fragments:
 - median length of 170bp

Cardiac and Thoracic Diagnosis & Regeneration

Nonreference Alleles

- Distribution of nonreference alleles across the selector for 40 plasma samples
 - Mean background rate:0.006%
 - Median background rate:0.003%

Somatic mutation detection

- Applied CAPP-Seq to discovery of somatic mutations in tumor samples
 - 17 patients with NSCLC
 - Formalin-fixed surgical resections
 - Needle biospy
- mean sequencing depth of ~5,000× in tumor samples
 - Detected 100% of previously identified SNVs and fusions
 - Discoverd many additional somatic variants
 - Characterized breakpoints at base-pair resolution
 - Identified partner genes for each of eight known fusions (incl. ALK1/ROS)

Table 1 Patient characteristics and pretreatment CAPP-Seq monitoring results

Case	Age	Sex	Histology	Stage	TNM	Smoking history	No. of SNVs (nonsilent)	Indels	Fusion		Pretreatment		
									ALK or ROS1	Partner	ctDNA (%)	ctDNA (pg mi-1)	Tumor (ml)
P12	86	F	SCC	IA	T15N0M0	Heavy	6 (3)	1			ND	ND	5.5
P1	66	M	Adeno	18	T2aN0M0	Heavy	12(3)	4			0.025	1.9	23.1
P16	82	F	Adeno	18	T2aN0M0	Heavy	26 (5)	2			0.019	2.5	22.5
P17	85	F	Adeno	IB	T2aN0M0	Heavy	2 (2)	0			ND	ND	10.2
P13	90	F	SCC	IIB	T3N0M0	Heavy	5 (4)	0			1.78	269.8	339.3
P2	61	M	Large cell	IIIA	T3N1M0	Heavy	12 (3)	1			0.896	64.7	23.1
P3	67	F	Adeno	IIIB	T15N3M0	Light	1(1)	0			0.095	16.2	7.9
P14	55	M	Adeno	IIIB	T1aN3M0	Heavy	8 (5)	0			0.05	10.2	5.2
P15	41	М	Adeno	IIIB	T3N3M0	Light	25 (10)	1			0.58	108.1	121.8
P4	47	F	Adeno	IV	T2aN2M1b	Heavy	3 (2)	0			0.039	2.1	12.4
P5	49	F	Adeno	IV	T1bN0M1a	None	4 (3)	0			3.2	143.8	82.1
P6	54	М	Adeno	IV	T3N2M1b	None	3 (2)	0	ALK	KIF5B	1.0	350.2	NA
P9	49	М	Adeno	IV	T4N3M1a	None	0	0	ALK	EML4	0.04	3.8	66.2
									ROSI	MKX, FYN			
P10	35	F	Adeno	IIIA	T4N0M0	None	0	0	ROS1	SLC34A2	-	-	_
P11	38	F	Adeno	IIIA	T3N2M0	None	2(1)	0	ROS1	CD74	-	-	
P7	50	M	Adeno	IV	T1aN2M1b	Light	0	0	ALK	EML4	-	-	-
P8	48	F	Adeno	IV	T4N0M1b	None	1 (0)	0	ALK	EML4	-	-	-

ND, mutant DNA was not detected above background (Online Methods); NA, tumor volume could not be reliably assessed. Dashes indicate a plasma sample was not available. Smoking history, ≥20 pack years (Heavy), >0 and <20 pack years (Light). SCC, small cell cancer; Adeno, adenocarcinoma; TNM, tumor, node and metastasis classification system. Additional details are provided in Supplementary Tables 3 and 4.

- fusions: never smokers/ few SNVs
- no fusions: median of 6 SNVs per patient

Sensitivity/Specifity of CAPP-Seq for disease monitoring

 plasma samples from 5 healthy controls and 35 samples collected from 13 patients with NSCLC (Table 1)

d

• ROC analysis:

Christian

Laboratory

Doppler

Cardiac and Thoracic Diagnosis & Regeneration

- CAPP-Seq: AUC-0.95
 - Sensitivity: 85%
 - Specifity:96%

MEDIZINIS

UNIVERSITÄ

Cardiac and Thoracic Diagnosis & Regeneration Monitoring of NSCLC tumor burden in plasma samples

whether levels of ctDNA correlate with radiographically measured tumor volumes

Fractions of ctDNA ranged from ~0.02% to 3.2%; -median of ~0.1% in pretreatment samples.

 levels of ctDNA in pretreatment plasma significantly correlated with tumor volume as measured by CT and PET imaging:

(R2 = 0.89, P = 0.0002)

for Cardiac and Thoracic Diagnosis & Regeneration

Table 1 Patient characteristics and pretreatment CAPP-Seq monitoring results

									Fusion		Pretreatment		
Case	Age	Sex	Histology	Stage	TNM	Smoking history	No. of SNVs (nonsilent)	Indels	ALK or ROS1	Partner	ctDNA (%)	ctDNA (pg ml-1)	Tumor (ml)
P12	86	F	SCC	IA	T15N0M0	Heavy	6 (3)	1			ND	ND	5.5
P1	66	M	Adeno	1B	T2aN0M0	Heavy	12(3)	4			0.025	1.9	23.1
P16	82	F	Adeno	IB	T2aN0M0	Heavy	26 (5)	2			0.019	2.5	22.5
P17	85	F	Adeno	IB	T2aN0M0	Heavy	2 (2)	0			ND	ND	10.2
P13	90	F	SCC	118	T3N0M0	Heavy	5 (4)	0			1.78	269.8	339.3
P2	61	M	Large cell	IIIA	T3N1M0	Heavy	12 (3)	1			0.896	64.7	23.1
P3	67	F	Adeno	IIIB	T15N3M0	Light	1(1)	0			0.095	16.2	7.9
P14	55	M	Adeno	IIIB	T1aN3M0	Heavy	8 (5)	0			0.05	10.2	5.2
P15	41	M	Adeno	IIIB	T3N3M0	Light	25 (10)	1			0.58	108.1	121.8
P4	47	F	Adeno	IV	T2aN2M1b	Heavy	3 (2)	0			0.039	2.1	12.4
P5	49	F	Adeno	IV	T1bN0M1a	None	4 (3)	0			3.2	143.8	82.1
P6	54	M	Adeno	IV	T3N2M1b	None	3 (2)	0	ALK	KIF5B	1.0	350.2	NA
P9	49	M	Adeno	IV	T4N3M1a	None	0	0	ALK	EML4	0.04	3.8	66.2
									ROS1	MKX, FYN			
P10	35	F	Adeno	IIIA	T4N0M0	None	0	0	ROS1	SLC34A2	-	-	-
P11	38	F	Adeno	IIIA	T3N2M0	None	2(1)	0	ROS1	CD74	-	-	-
P7	50	M	Adeno	IV	T1aN2M1b	Light	0	0	ALK	EML4	-	-	-
P8	48	F	Adeno	IV	T4N0M1b	None	1 (0)	0	ALK	EML4	-	-	-

ND, mutant DNA was not detected above background (Online Methods); NA, tumor volume could not be reliably assessed. Dashes indicate a plasma sample was not available. Smoking history, >20 pack years (Heavy), >0 and <20 pack years (Light). SCC, small cell cancer; Adeno, adenocarcinoma; TNM, tumor, node and metastasis classification system. Additional details are provided in Supplementary Tables 3 and 4.

Diagnosis & Regeneration

Monitoring of NSCLC tumor burden in plasma samples

whether levels of ctDNA correlate with radiographically measured tumor volumes

Fractions of ctDNA ranged from ~0.02% to 3.2%; -median of ~0.1% in pretreatment samples.

• levels of ctDNA in pretreatment plasma significantly correlated with tumor volume as measured by CT and PET imaging:

(R2 = 0.89, P = 0.0002)

for

Cardiac and Thoracic Diagnosis & Regeneration

ctDNA level correlates with tumor volume

С 1,000 Tumor volume (cm³) 100 Stage I 10 $R^2 = 0.89$ P = 0.00021 111111 1,000 10 100 1 ctDNA (pg ml^{-1})

ctDNA concentrations reflect disease burden

• analyzed plasma DNA from three patients with advanced NSCLC undergoing distinct therapies

ctDNA levels highly correlated with tumor volumes during therapy

- -R2 = 0.95 (P15)
- -R2 = 0.85 for (P9)

Patient 13

surveillance CT or PET-CT scans difficult to interpret
 →radiation-induced inflammatory and
 fibrotic changes in the lung and surrounding tissues

P13, who was treated with radiotherapy for stage IIB NSCLC, follow-up imaging: large mass

-> interpreted to represent residual disease

-ctDNA at the same time point was undetectable --patient remained disease free for 22 months

Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

for

Patient 13

Patient 14

- (P14): treated with chemoradiotherapy for stage IIIB NSCLC
 follow-up imaging revealed a near-complete response
- ctDNA concentration slightly increased following therapy

 suggesting progression of occult microscopic disease

clinical progression was detected 7 months later ultimately succumbed to NSCLC

ctDNA analysis: identifying residual disease after therapy

Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

for

Cardiac and Thoracic Diagnosis & Regeneration

cured

Laboratory

Doppler

early-stage NSCL

CAPP-Seq allows monitoring in early stage NSCLC.

- Patients P1/P16 : surgery and stereotactic ablative radiotherapy for stage IB NSCLC.
- P1: ctDNA in pretreatment plasma but not at 3 or 32 months following surgery, which suggests that this patient was free of disease and probably

early-stage NSCLC

MEDIZINISCHE

UNIVERSITÄT WIEN

- P16, PET-CT showed a residual mass
 - represent residual tumor
 - or postradiotherapy inflammation
- ctDNA levels stayed low

Christian

Cardiac and Thoracic Diagnosis & Regeneration

Laboratory

Doppler

 \rightarrow patient remained free of disease at last follow-up 21 months after therapy.

or Cardiac and Thoracic Diagnosis & Regeneration

Biopsy-free cancer screening

- they blinded themselves to the mutations present in each patient's tumor
 - tested for the presence of cancer DNA in each plasma sample
- correctly classified 100% of patient plasma samples with ctDNA above fractional abundances of 0.4%
 false-positive rate of 0%

→CAPP-Seq : improve the low positive predictive value of low-dose CT screening

for Cardiac and Thoracic Diagnosis & Regeneration

In tumot hasma 5 TP ÷ \odot ÷ SNV frequency (%) 4 FN FP + 3 TΝ 00 2 0 P15-51 P15-4 아 도 en E P16-3 <u>Р</u> P15-1 Ŕ 섮 ģ Plasma DNA sample Screening result

Conclusion

- CAPP-Seq: a new method for ctDNA quantitation
 - high sensitivity and specificity
 - lack of a need for patient-specific optimization
 - coverage of nearly all patients with NSCLC
- First NGS-based method for ctDNA analysis
 - ultralow detection limit and broad patient coverage at a reasonable cost

ctDNA were highly correlated with tumor volume/ distinguished between residual disease and treatment-related imaging changes

Paper focused on NSCLC; method could be applied to any malignancy for which recurrent mutation data are available

Cardiac and Thoracic Diagnosis & Regeneration

Conclusion

- levels of ctDNA are considerably lower than the detection thresholds of previously described sequencing-based methods
- pretreatment ctDNA concentration is <0.5% in the majority of patients with lung and colorectal carcinomas.
- Following therapy, ctDNA concentrations drop
 → thus requiring even lower detection thresholds

whole-exome whole-genome sequencing would not be sensitive enough to detect ctDNA in most patients with NSCLC

Conclusion

CAPP-Seq selctor

Christian Doppler Laboratory

-routinely applied clinically and

-accelerating the personalized detection, therapy, monitoring of cancer

CAPP-Seq will prove

- valuable in a variety of clinical settings,
 - assessment of cancer DNA in alternative biological fluids and specimens with low cancer cell content

additional gains in the detection threshold are desirable

- increasing the amount of plasma used for ctDNA: more than~1.5 ml
- the potential for inefficient capture of fusions

 \rightarrow underestimates of tumor burden (P9)

• Thank you for your attention!