




#### RESEARCH ARTICLE

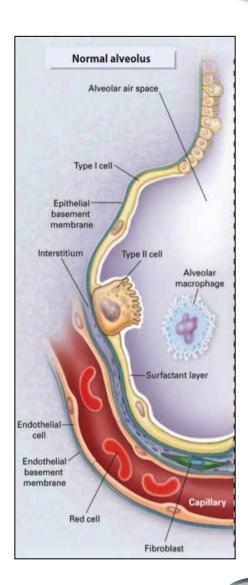
#### **LUNG DISEASE**

# Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis

Christine Happle,<sup>1,2</sup>\* Nico Lachmann,<sup>3,4</sup>\* Jelena Škuljec,<sup>1</sup> Martin Wetzke,<sup>1</sup> Mania Ackermann,<sup>3,4</sup> Sebastian Brennig,<sup>3,4</sup> Adele Mucci,<sup>3,4</sup> Adan Chari Jirmo,<sup>1,2</sup> Stephanie Groos,<sup>5</sup> Anja Mirenska,<sup>1</sup> Christina Hennig,<sup>1,2</sup> Thomas Rodt,<sup>6</sup> Jens P. Bankstahl,<sup>7</sup> Nicolaus Schwerk,<sup>1,2</sup> Thomas Moritz,<sup>3,4†</sup> Gesine Hansen<sup>1,2†‡</sup>

Science and Translational Medicine, 2014




# **Alveolar Macrophage (AM)**



Primary cell in lung defense

# Phagocytosis of:

- o invading microorganisms
- surfactant proteins





# Pulmonary Alveolar Proteinosis (PAP)



# Genetics

Hereditary (herPAP): mutations in the CSF2RA or CSF2RB genes

- Defect in GM-CSF signaling
- Blockade in terminal alveolar macrophage differentiation
- Ineffective phagocytosis
- Protein aggregation
- Accumulation of surfactant

# Consequences

- Massive protein accumulation in the lungs
- Respiratory failure
- Susceptibility to infections

- → Rare
- → Life-threatening
- → Onset: pre-school age



## **AIM**



# Analysis of the therapeutic potential of intrapulmonary transplanted macrophage progenitors

Mouse model of organotropic transplantation of myeloid progenitor cells in PAP

# Csf2rb<sup>-/-</sup> mice

- knock-out for CSF2RB gene
- PAP model



## B6 strain

- carries CD45.1 isotype
- enables tracing of cells

# huPAP mice

 targeted replacement of murine by human IL-3/GM-CSF

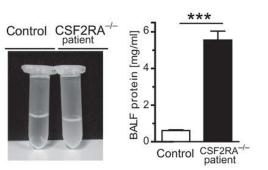


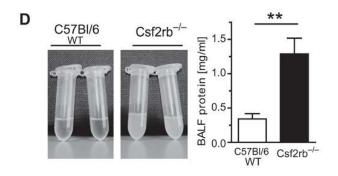
## **NSG** mice

- NOD scid gamma
- immunodeficiency enables transplantation



# Csf2rb-/- mice display all main features of human herPAP



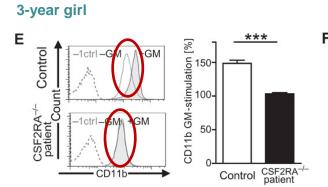


# features of human herPAP

# 3-year girl mouse A Control CSF2RA<sup>-/-</sup> patient Chest computed tomography (CCT) B C57Bl/6 WT Csf2rb<sup>-/-</sup>

BAL fluid turbidity and proteinosis

C

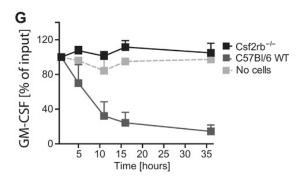







# Csf2rb<sup>-/-</sup> mice display all main features of human herPAP




Stimulation of hu-granulocytes or m-bone marrow cells with GM-CSF



→ No upregulation of CD11b expression

Consumption of GM-CSF in murine cells





Csf2rb-/- Mouse model mimics human disease in regard to protein accumulation and defect in GM-CSF signaling



# **Long-term pulmonary engraftment**



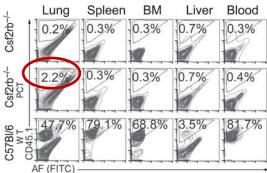
**Engraftment of CD45.1** 

donor-derived cells

Csf2rb<sup>-/-</sup>

6 weeks

9 months CD45.1


**FSC** 

Csf2rb<sup>-/-</sup>

### **Experimental design**

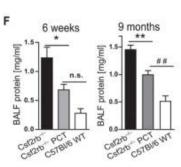
# Healthy donor herPAP model C57Bl/6 WT Bone marrow PCT pulmonary cell transplantation Csf2rb-/- Csf2rb-/- Csf2rb-/- Csf2rb-/-

Donor-derived cells exclusively found in the lungs

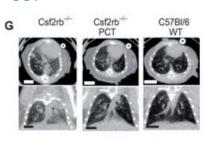


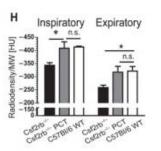
Donor-derived cells can be detected up to 9 months after transplantation



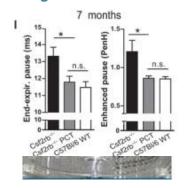

# Improvement of PAP-phenotype

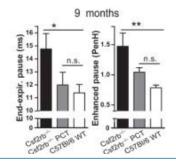


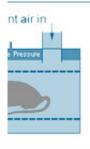

### **BAL** fluid turbidity

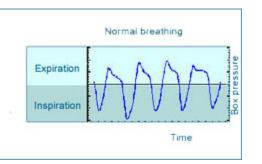

# Csf2rb<sup>+</sup> Csf2rb<sup>+</sup> C57Bl/6 PCT WT

## **Proteinosis**





**CCT** 



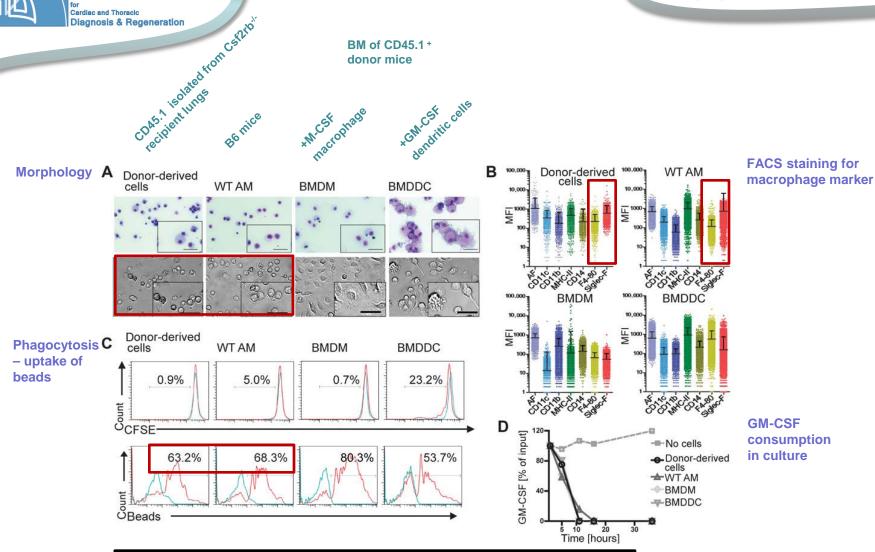




### Lung function – whole body plethysmography










Proteinosis is resolved and respiratory function is restored



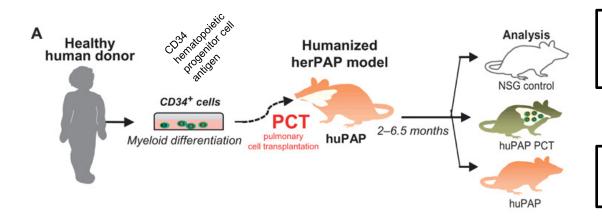
# **Differentiation of transplanted cells**





CD45.1+ isolated from Csf2rb-/- recipient lungs undergo differentiation into functional macrophages




# Transplantation of human macrophage progenitors



### Mouse model

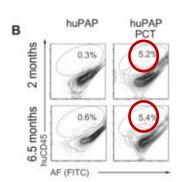
- ✓ Long-term engraftment of donor cells
- ✓ Improvement of PAP phenotype
- Differentiation in functional macrophages

# Also working for human cells?



### **NSG** mice

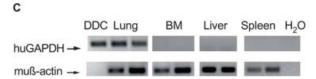
- NOD scid gamma
- immunodeficiency enables transplantation


### huPAP mice

- targeted replacement of murine by human IL-3/GM-CSF

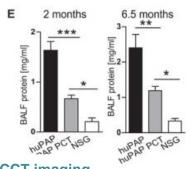


# **Transplantation of human** macrophage progenitors

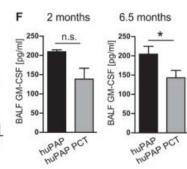




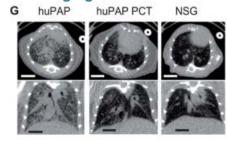

# huCD45+ cells in recipient mice

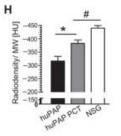

Long-term engraftment of donor cells

## **RT-PCR** with primers for human or murine cells

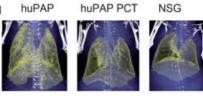



Lung-specific engraftment

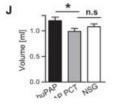

### **Proteinosis**




### **GM-CSF** accumulation




## **CCT** imaging



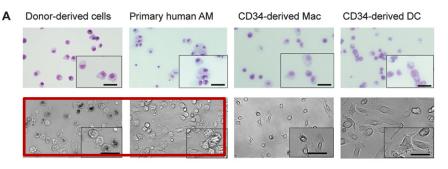






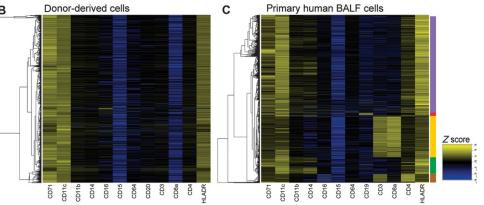

3D rendering of CCT data depicting lung density and structural changes




**Inspiratory** volume



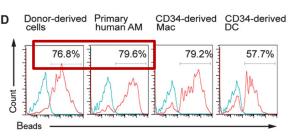
# **Differentiation of transplanted cells**

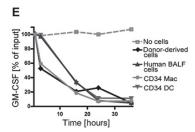



# Morphology



Donor-derived cells resemble primary human AM morphology


#### **Heat map**




- **(B)** Transplanted cells express markers characteristic for AM
- high expression of CD71, CD11c, and MHC-II
- low expression of CD11b, CD14
- **(C)** Hierachical clustering of CD45+: clear clusters of T cells, B cells and macrophages

Phagocytosis

– uptake of
beads





GM-CSF consumption in culture



# **Summary**



Two mouse models for organotropic transplantation of macrophage progenitors cell in herPAP were established

- single transplantation
- exclusive pulmonary engraftment
- in situ differntiation
- long-term persistence of donor-derived cells

# no monitoring beyond 9 months age

- transplantation of progenitor cells may reduce risk of secondary cancer development compared to HSC transplant
- HSC-based gene therapy for herPAP in Csf2br-/- mice model

