

Cardiac and Thoracic Diagnosis & Regeneration

Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury

Andrew E. Vaughan et al., *Nature* 517, 621–625 (29 January 2015)

.

for Cardiac and Thoracic Diagnosis & Regeneration

After influenza infection \rightarrow ablation of epithelial cells

Cardiac and Thoracic Diagnosis & Regeneration

After influenza infection...

-expansion of Krt5⁺ cells

- Coexpression of integrin beta₄

Christian Lang n1242366@students.meduniwien.ac.at

for Cardiac and Thoracic Diagnosis & Regeneration

After bleomycin injury \rightarrow also expansion of Krt5⁺-cells

n1242366@students.meduniwien.ac.at

Cardiac and Thoracic Diagnosis & Regeneration

- After injury (influenza, bleomycin) → expansion of Krt5⁺ cells in the lung parenchyma
- Cellular origin still unknown...

Lineage-tracing with lungspecific Cre-recombinase drivers (*CC10 and SPC*)

Source: http://en.wikipedia.org/wiki/Cre-Lox_recombination#/media/File:CreLoxP_experiment.png

i.

Christian Doppler Laboratory

for Cardiac and Thoracic Diagnosis & Regeneration

Krt5⁺-cells are untraced

Cardiac and Thoracic Diagnosis & Regeneration

Small fraction (13%) of expanded Krt5⁺-cells are labelled (Krt5-CreERT2)

D11 lung transplant

k

- \rightarrow expansion of Krt5⁺-cells
- → But Krt5⁺-cells are <u>not fluorescent</u>

MEDIZINISCHE UNIVERSITÄT WIEN

for Cardiac and Thoracic Diagnosis & Regeneration

Major source of Krt5⁺ (and Np63⁺) cells

a lineage-negative epithelial progenitor (LNEP)

Cardiac and Thoracic Diagnosis & Regeneration

Characterizing and segregating the LNEP -Beta₄-expression in CC10-CreERT2 mice -

fold change vs. type II cells

	clara cells	CC10- β4+	
SPC	0.25 ± 0.1	0.023 ± 0.01	
ABCA3	0.46 ±0.06	0.05 ± 0.01	
CC10	89.2 ± 25.5	7.2 ± 2.1	
Aqp5	0.49 ± 0.04	0.017± 0.01	
CGRP	1.12 ± 0.12	0.19 ± 0.06	
FoxJ1	85.8 ± 25.8	271 ± 73	
ΔNp63	ND	detected	
Hey1	66.2 ± 14.0	161 ± 82.0	
Jag2	1.22 ± 0.41	4.46 ± 1.51	
Sox2	481± 51	1444 ± 152	

CC10⁻beta₄⁺⁻cells \rightarrow LNEP-containing

Cardiac and Thoracic Diagnosis & Regeneration

Np63 – expression in the LNEP-containing cells

С

fold change vs. type II cells

2		clara cells	CC10- β4+
SPC		0.25 ± 0.1	0.023 ± 0.01
ABC	43	0.46 ±0.06	0.05 ± 0.01
CC10	l	89.2 ± 25.5	7.2 ± 2.1
Aqp5		0.49 ± 0.04	0.017± 0.01
CGR	2	1.12 ± 0.12	0.19 ± 0.06
FoxJ	1	85.8 ± 25.8	271 ± 73
ΔNp6	3	ND	detected
Hey1		66.2 ± 14.0	161 ± 82.0
Jag2		1.22 ± 0.41	4.46 ± 1.51
Sox2		481± 51	1444 ± 152

CC10^{-beta₄+-cells \rightarrow LNEP-containing}

Cardiac and Thoracic Diagnosis & Regeneration

а

Np63⁺-cells → scattered sporadically in uninjured distal airways (figure c)

Np63⁺-cells \rightarrow no expression of Krt5 protein (figure a)

Maybe reason for weak labelling of Krt5⁺-cells...(Fig. 1f,g)

Christian Lang 00 n1242366@students.meduniwien.ac.at

MEDIZINISCHE UNIVERSITÄT WIEN

for Cardiac and Thoracic Diagnosis & Regeneration

Analyizing the **CC10⁻beta**₄⁺ and the **Krt5-CreERT2**-population...

b

78% of CC10⁻Beta₄⁺ cells \rightarrow multiciliated

Cardiac and Thoracic Diagnosis & Regeneration

- Np63 trancript in
 - CC10⁻Beta₄⁺-cells <
 - (rare) Krt-CreERT2-labelled cells \subset
- Enrichment for pluripotency-associated tranciption factors (Myc, Klf4) in the LNEP (Krt5-CreERT-2-labelled cells) group

Cardiac and Thoracic Diagnosis & Regeneration

Transplantation **of CC10⁻Beta₄⁺** cells (*LNEP containing*) into influenza-injured mice

Development of LDEPs -> dependent on local microenvironment

Christian Doppler MEDIZINISCHE VERSITAT N La donor Krt5 for Cardia Diag SPC

Christian Lang n1242366@students.meduniwien.ac.at \ C

for Cardiac and Thoracic Diagnosis & Regeneration

g

Beta $\overline{}_{Cardiac and Anoracle}^{-}$ cells \rightarrow small clusters and only expression of SPC (figure i

CC10⁺ cells \rightarrow lost SPC and CC10-expression (figure j, k)

Transplantation of multi-ciliated cells \rightarrow lack of progenitor \rightarrow no development (figure I)

Christian Doppler

Laboratory

MEDIZINISCHE UNIVERSITÄT WIEN

Cardiac and Thoracic Diagnosis & Regeneration

Transplantation of eGFP-labelled (greeN) and tdTomato-expressing LNEPs

Non-overlapping (fig. E, left) & highly-proliferative engraftments (fig. E, right)

е

L

Cardiac and Thoracic Diagnosis & Regeneration

Normal mature type II cells \rightarrow no Beta₄ expression

LNEP-clones \rightarrow **Beta**₄ **expression** (fig. E, right)

for Cardiac and Thoracic Diagnosis & Regeneration

Summary:

LNEPs

proliferative & **multipotent** function after transplantation

Doppler Laboratory

Christian

Cardiac and Thoracic Diagnosis & Regeneration

-RNA-analysis \rightarrow CD14-enrichment in Np63⁺ CC10⁻ Beta₄⁺ cells (LNEP containing)

- CD200 selects against multi-ciliated cells (fig. e)

Christian Lang n1242366@students.meduniwien.ac.at

for Cardiac and Thoracic Diagnosis & Regeneration

Beta₄+-**CD200**+ **CD14**+ cells \rightarrow represent **active fraction** of LNEPs

Cardiac and Thoracic Diagnosis & Regeneration

Beta₄⁺-CD200⁺ CD14⁺ cells \rightarrow represent active fraction of LNEPs

β4+ CD200+ CD14+ transplant

Krt5-CreERT2 / tdTomato transplant

d

for Cardiac and Thoracic Diagnosis & Regeneration

LNEPs <u>ex vivo</u> \rightarrow expression of Krt5

only after stimulation with BALF from influenza-injured mice

Cardiac and Thoracic Diagnosis & Regeneration

"Screen" of pathway inhibitors \rightarrow Notch signaling pathway involved

DAPT... γ -sectretase inhibitor \rightarrow inhibitor of Notch-signalling

for Cardiac and Thoracic Diagnosis & Regeneration

In vivo analysis → Notch-pathway involved!

ICD...Notch1 intracellular domain Hes1...Notch signalling target

for Cardiac and Thoracic Diagnosis & Regeneration

Notch pathway is involved in LNEP-regulation

for Cardiac and Thoracic Diagnosis & Regeneration

Notch pathway is involved in LNEP-regulation

h

Persistent Notch-signalling \rightarrow prevents alveolar differentation Removal of Notch \rightarrow maturation towards type II cells

for Cardiac and Thoracic Diagnosis & Regeneration

After bleomycin injury

e After influenza injury

Alveolar cysts ("micro-honeycombing")

for Cardiac and Thoracic Diagnosis & Regeneration

Ongoing Notch activity in cystic epithelium

Mouse

for Cardiac and Thoracic Diagnosis & Regeneration

Ongoing Notch activity in cystic epithelium

Ongoing Notch activity in cystic epithelium

g

Christian

Cardiac and Thoracic

Doppler Laboratory

No Notch activity in normal alveolar epithelium

Cardiac and Thoracic Diagnosis & Regeneration

Ongoing Notch activity after transplantation of LNEP-derived Krt5⁺ and CC10⁺ cells

b

for Cardiac and Thoracic Diagnosis & Regeneration

Notch antagonism in vivo \rightarrow increase in the number of cyst-derived SPC⁺ cells

Christian Lang n1242366@students.meduniwien.ac.at

for Cardiac and Thoracic Diagnosis & Regeneration

Ongoing Notch activity in Krt5⁺ cysts (human with IPF)

No Notch activity in hyperplastic SPC⁺ cells

for Cardiac and Thoracic Diagnosis & Regeneration

Ongoing Notch activity in Krt5⁺ cysts (human with IPF)

diseased human lung

for Cardiac and Thoracic Diagnosis & Regeneration

No Notch activity in normal human lung

Cardiac and Thoracic Diagnosis & Regeneration

Ongoing Notch activity in patients with scleroderma

for Cardiac and Thoracic Diagnosis & Regeneration

Co-expression of SPC⁺ and Krt5⁺ cell lines in patients with scleroderma (n=3)

Christian

Cardiac and Thoracic Diagnosis & Regeneration

Doppler Laboratory MEDIZINISCHE UNIVERSITAT WIEN

Np63⁺ Krt5⁻ cells in normal terminal airways(human) → analogous to LNEPs in mice

normal human lung

Summary

- LNEPs cells present within normal distal lung
- LNEPs activate remodelling program after major injury (Np63 and Krt5)
- High proliferative capacity and multipotency of LNEPs
- LNEPs require Notch signalling
- Hyperactive Notch signalling → alveolar cysts,
 IPF and scleroderma

Discussion

LNEPs in human

Christian

Laboratory

• Notch signalling *chronic lung disease*