

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

STEM CELLS FOR CARDIAC REGENERATION

REPLICABILITY OF SCIENTIFIC DATA

Lucian Beer 2016

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

OUTLINE

- Stem cells for Cardiac regeneration (Orlic Paper)
- 2. Prof. Anversa's group

3. Lessons to be learned

for Diagnosis & Regeneration in Thoracic Dise

STEM CELLS FOR Applied Immu Clogy ARDIAC REGENERATION

"Orlic paper" published 2001 in Nature Showed that stem cells derived from bone marrow can transdifferentiate into cardiomyocytes and "generate de nova myocardium"

(6032 citations on google scholar 05/2016)

SR

Ankersmit Laboratory STEM CELLS FOR MEDIZINISCHE UNIVERSITÄT In Thoracic Disease & Applied Immunicacy ARDIAC REGENERATION

Myocardial infarct after injection on bone marrow derived stem cells. Arrowheads indicate regenerating myocardium; VM, viable myocardium.

red, cardiac myosin green, propidium iodide labelling of nuclei

Orlic et al. Nature 410, 701-705 (5 April 200

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

STEM CELLS

Stem cells regenerate the myocard from the endocardium (EN) to the epicardium (EP)

EGFP (green); **b**, cardiac myosin (red); **c**, combination of EGFP and myosin (red–green), and propidiumiodide-stained nuclei (blue). Infarcted tissue (IT) Subendocardial myocytes (SM)

Orlic et al. Nature 410, 701-705 (5 April 200

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

STEM CELLS

Newly built myocardium forms regular cell-cell contacts

Border zone

Area of regeneration

Orlic et al. Nature 410, 701-705 (5 April 200

for Diagnosis & Regeneration

STEM CELLS

in Thoracic Diseases & Applied Immunology

Stem cell improve cardic function

Orlic et al. Nature 410, 701-705 (5 April 2001)

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology **STEM CELLS**

Pubmed search with tags: "stem cell" AND heart

Smooth-muscle cells

Cardiac myocytes **Arrowhead** = Y-chromosome in a female donor heart

Quaini F et al. N Engl J Med 2002;346:5-15.

Ankersmit KITCELLS ARE CARDIAC RESIDENTS FAT

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

CELLS

In vivo data: 20 day after AMI;

Cardiac myosin, red; PI, green. (D) Connexin 43 (yellow; arrows). (E) N-cadherin (yellow; arrows). (D and E) BrdU-PI labeled nuclei, white-green

C-kit cells expressing the transcription factor Nkx2.5 (white dots)

Beltrami et al. Cell 2003;114:763-776.

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

CLINICAL IMPACT

Study characteristics

Immediate transation from basic science to clinical trials!

MEDIZINISCHE UNIVERSITAT WIEN

Name of Study	Sample size (Cell therapy/ Controls)	Mean follow-up duration (month)	Cell type	Location of AMI	Time from AMI to cell delivery (days)	Imaging modality
CADUCEUS	17/8	12	Cardiosphere- derived cells	anterior (except 1)	62±11	MRI
BONAMI	52/49	3	BM-MNC	anterior	9±2	SPECT, RNV
Aalst Study	19/16	4	BM-MNC	multiple	12±1	LV Angiography
REPAIR-AMI	101/103	4	BM-MNC	multiple	4±1	LV Angiography
BOOST	30/30	6	BM-MNC	multiple	5±1	MRI
LATE-TIME	58/29	6	BM-MNC	multiple	17±5	MRI
ASTAMI	50/50	6	BM-MNC	anterior	6±1	SPECT, Echocard.
REGENT	160/40	6	BM-MNC, or selected CD34+CXCR	anterior	7±2	MRI
SWISS-AMI	133/67	4	BM-MNC	multiple	13±10	MRI
TIME	79/41	6	BM-MNC	multiple	5±2	MRI
SCAMI	29/13	12	BM-MNC	multiple	6±1	MRI
FINCELL	39/39	6	BM-MNC	multiple	3±1	Echocard.

SPECT: single photon emission computed tomography, RNV: radionuclide ventriculography; Echocard.: Echocardiography

Gyöngyösi et al. Circ Res 2015

Gyöngyösi et al. Circ Res 2015

Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts

Charles E. Murry¹, Mark H. Soonpaa², Hans Reinecke¹, Hidehiro Nakajima², Hisako O. Nakajima², Michael Rubart², Kishore B. S. Pasumarthi²*, Jitka Ismail Virag¹, Stephen H. Bartelmez³, Veronica Poppa¹, Gillian Bradford², Joshua D. Dowell², **David A. Williams²* & Loren J. Field²** NATURE | VOL 428 | 8 APRIL 2004 | www.nature.com/nature several clinical trials^{16,17}. Here, we used both cardiomyocyterestricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

OUTLINE

1. Stem cells for Cardiac regeneration (Orlic Paper)

2. Prof. Anversa's group

3. Lessons to be learned

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

LEARNED

- 1. Reproducibility of scientific data is <50%
 - No correlation between IF and reproducibility

Prinz et al. Nature Reviews Drug Discovery2011 ;10

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

LESSONS TO BE

MEDIZINISCHE UNIVERSITAT WIEN

LEARNED

Table 1. Examples of Some Reported Reproducibility Concerns in Preclinical Studies

Author	Field	Reported Concerns
loannidis et al (2009) ²²	Microarray data	16/18 studies unable to be reproduced in principle from raw data
Baggerly et al (2009)23	Microarray data	Multiple; insufficient data/poor documentation
Sena et al (2010) ²⁴	Stroke animal studies	Overt publication bias: only 2% of the studies were negative
Prinz (2011) ¹	General biology	75% to 80% of 67 studies were not reproduced
Begley & Ellis (2012) ²	Oncology	90% of 53 studies were not reproduced
Nekrutenko & Taylor(2012) ²⁵	NGS data access	26/50 no access to primary data sets/software
Perrin (2014)26	Mouse, in-vivo	0/100 reported treatments repeated positive in studies of ALS
Tsilidis et al (2013) ²⁷	Neurological studies	Too many significant results, overt selective reporting bias
Lazic & Essioux (2013)28	Mouse VPA model	Only 3/34 used correct experimental measure
Haibe-Kains et al (2013) ²⁹	Genomics/cell line analysis	Direct comparison of 15 drugs and 471 cell lines from 2 groups revealed little/no concordant data
Witwer (2013)30	Microarray data	93/127 articles were not MIAME compliant
Elliott et al (2006)31	Commercial antibodies	Commercial antibodies detect wrong antigens
Prassas et al (2013)32	Commercial ELISA	ELISA Kit identified wrong antigen
Stodden et al (2013)33	Journals	Computational biology: 105/170 journals noncompliant with National Academies recommendations
Baker et al (2014)34	Journals	Top tier fail to comply with agreed standards for animal studies
Vaux (2012)35	Journals	Failure to comply with their own statistical guidelines

ALS indicates amyotrophic lateral sclerosis; MIAME, minimum information about a microarray experiment; NGS, next generation sequencing; and VPA, valproic acid (model of autism).

Prinz et al. Nature Reviews Drug Discovery2011 ;10

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

LEARNED

- 1. Reproducibility of scientific data is <50%
 - No correlation between IF and reproducibility
- 2. Publishing policies (e.g.. Publication pressure, splitting of data analysis PI does all final data analysis...)
- 3. Academic culture:
 - Journal clubs
 - Cooperation
 - Publishing of raw data....

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

CONCLUSION

"I think you should be more explicit here in step two." http://www.huffingtonpost .com/david-h-bailey/setthe-default-to-openr_b_2635850.html

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

0012

reproducibility a principle of the scientific method

separates scientists from other researchers and normal people

http://xkcd.com/242/