Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels

Ming-Dong Zhang^{a,1}, Swapnali Barde^a, Ting Yang^{b,c}, Beilei Lei^d, Lars I. Eriksson^{b,e}, Joseph P. Mathew^d, Thomas Andreska^f, Katerina Akassoglou^{g,h}, Tibor Harkany^{a,i}, Tomas G. M. Hökfelt^{a,1,2}, and Niccolò Terrando^{b,d,1,2}

^aDepartment of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden; ^bDepartment of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; ^cDivision of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC 27710; ^dDepartment of Anesthesiology, Duke University Medical Center, Durham, NC 27710; ^eFunction Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm 171 76, Sweden; ^fInstitute of Clinical Neurobiology, University of Würzburg, 97078 Wuerzburg, Germany; ^gGladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158; ^hDepartment of Neurology, University of California, San Francisco, CA 94158; and ⁱDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria

Contributed by Tomas G. M. Hökfelt, August 25, 2016 (sent for review January 18, 2016; reviewed by Jim C. Eisenach, Ronald Lindsay, Remi Quirion, and Tony L. Yaksh)

Published online October 10, 2016

Impact factor: 9.661

reviewed by Jim C. Eisenach, Wake Forest University; Ronald Lindsay, Zebra Biologics; Remi Quirion, McGill University; and Tony L. Yaksh, University of California, San Diego)

PNAS

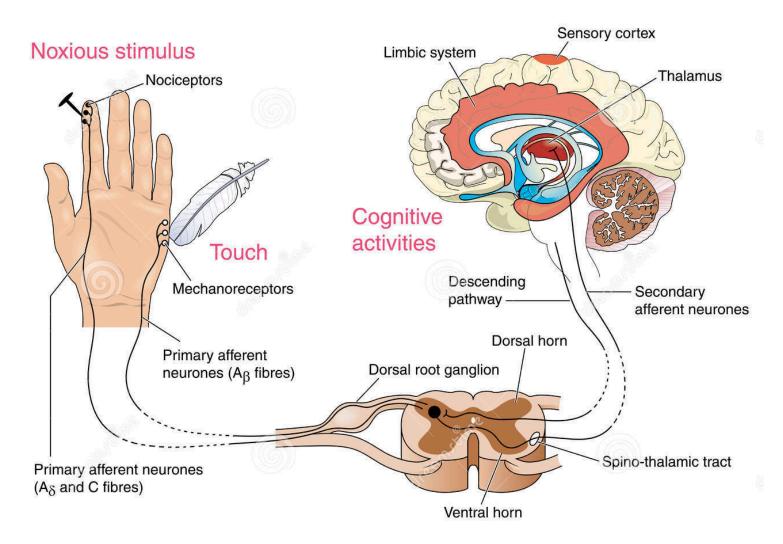
Carmen Schwaiger, MSc. Institute of Clinical Neurology, AKH 4J

Agenda

- 1) Introduction status quo
- 2) Aims of the study
- 3) Materials/Methods
- 4) Results
- 5) Discussion
- 6) Summary Own opinion

Agenda

- 1) Introduction status quo
 - Background
 - Pain
 - Tibial fracture
 - Neurotrophins
 - Problem to be solved
- 2) Aims of the study
- 3) Materials/Methods
- 4) Results
- 5) Discussion
- 6) Summary Own opinion



Background - pain

- Many forms of pain
- Actual circumstances, expectation, stress, emotions....
- Pain critical component of recovery
 - Hindering recovery after surgery
 - Longer periods of rehabilitation and immobilisation
- Complex pathway
 - Periphery -> central nervous system (CNS)

Background – pain - anatomy

- Neuropathic pain
 - Caused by neuronal damage
 - Abnormal sensations paresthesia
 - Normal non-painful stimuli allodynia
 - Current treatment:
 - Opioids
 - Anticonvulsants

Postoperative pain after surgery

- into chronic pain
- Reduction of life quality
- 50 % of hip-fracture repair patients
 - Acute confusional state (delirium)
- Recent studies
 - Hippocampal abnormalities in animal models
 - Reduction in elderly patients with chronic pain
 - Changes in regional brain volume related to postoperative cognitive dysfunction (POCD)

• Tibial fracture mouse model - intermedullary pinning

• well established neuropathic pain model

- After fracture
 - Excessive substance P signalling
 - and regional inflammatory response
 - Release of systemic proinflammatory cytokines
 - TNF alpha
 - IL 1 beta
 - Mouse model (tibial fracture)
 - Similar proinflammatory changes
 - Activation of nuclear factor κB signalling in macrophages
 - Blood-brain barrier permeability changes
 - Hippocampal neuroinflammation
 - Subsequent cognitive impairment

9

Neurotrophins

- Family of proteins that induce
 - Survival, development, function of neurons
- NGF
- Neurotrophin 3&4
- Brain derived neurotrophic factor (BDNF)
 - Wide range of central functions and neuronal plasticity
 - Cell survival
 - Growth and differentiation neurons and synapses
 - Migration
 - Learning and memory
 - Active in hippocampus, cortex,...

BDNF

FEBS 23442

FEBS Letters 470 (2000) 113-117

Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor

Takeshi Nakahashi, Hironobu Fujimura, C. Anthony Altar, Jess Li, Jun-ichi Kambayashi, Narendra N. Tandon, Bing Sun*

Maryland Research Laboratories, Otsuka America Pharmaceutical, Inc., 9900 Medical Center Drive, Rockville, MD 20850, USA

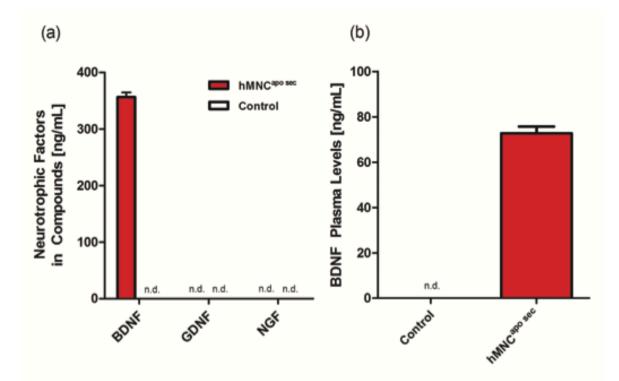
Received 17 January 2000; received in revised form 23 February 2000

Edited by Guido Tettamanti

SCIENTIFIC REPORTS

OPEN

ceived: 6 December 2016 cepted: 16 May 2017


Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves

Jonathan M. Grasman 💿 & David L. Kaplan

BDNF

Profile of neurotrophic factors in ApoSec (Secretome of apoptotic leukocytes) and animal treated with ApoSec

Aim of the study

- Characterization of the effects of tibial fracture with intramedullary pinning in the primary somatosensory system
- Analyse markers in dorsal root ganglia, spinal cord, brain regions (hippocampus)

Agenda

- 1) Introduction status quo
- 2) Aims of the study
- 3) Materials/Methods
- 4) Results
- 5) Discussion
- 6) Summary Own opinion

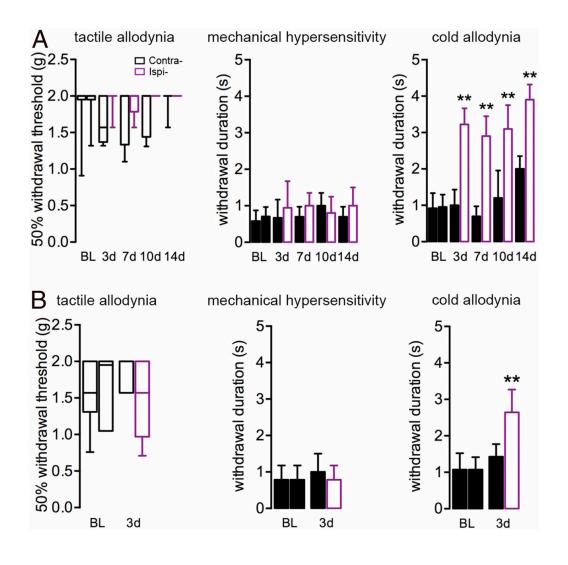
Methods

- Adult male, C57BL/6 wildtype mice
 - Tibial fracture surgery with intramedullary pinning was performed
 - Transection of sciatic nerve
- 2 hours up to 2 weeks
- Behavior tests
 - Frey filaments
 - Safety pin mechanical hyperalgesia
 - Acetone cold allodynia

Methods

- Immunohistochemistry
- In situ-hybridization
 - Plasmid DNA containing RNA probes specifice for mouse BDNF
- RT-qPCR

Agenda


- 1) Introduction status quo
- 2) Aims of the study
- 3) Materials/Methods

4) Results

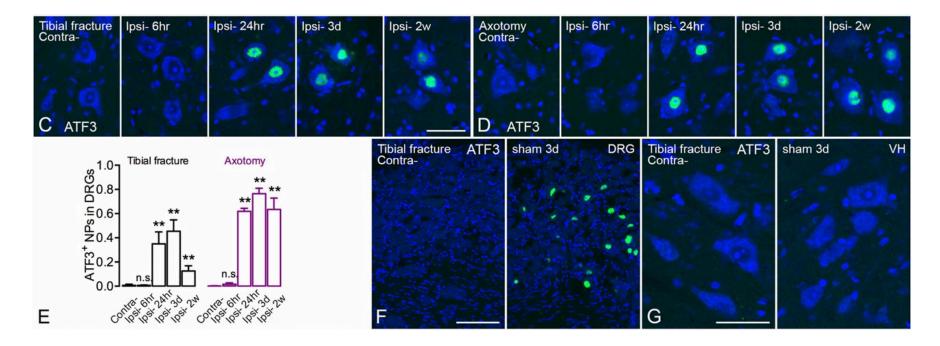
- 5) Discussion
- 6) Summary Own opinion

Cold allodynia triggered by unilateral tibial fracture.

PNAS

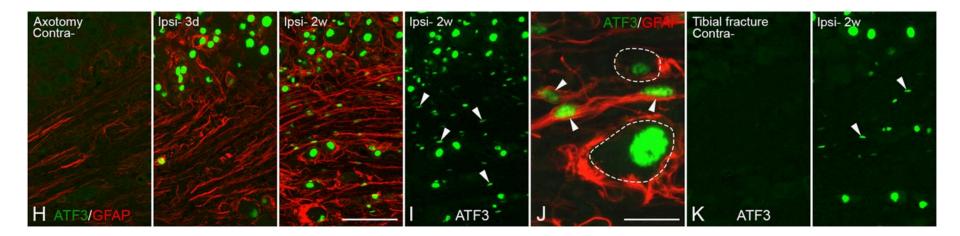
ATF3

- Activating transcription factor 3
- mammalian activation transcription factor/cAMP responsive element-binding (CREB) protein family
- ATF3 🛧
 - Physiological stress in various tissues
 - Marker for regeneration following injury of dorsal root ganglion neurons



Activation of ATF3 in DRGs after unilateral tibial fracture.

Tibial fracture ATF3 Contra-	Ipsi- 6hr	tpsi-24hr	Ipsi- 3d	Ipsi- 2w
Axotomy Contra- B	Ipsi- 6hr	Ipsi- 24hr	Ipsi- 3d	Ipsi- 2w

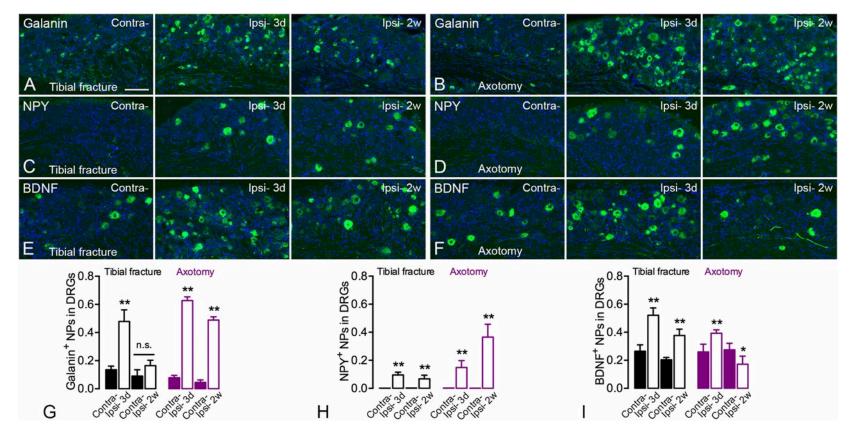


Activation of ATF3 in motor neurons after unilateral tibial fracture.

Activation of ATF3 in Schwann cells after unilateral tibial fracture.

Galanin-LI

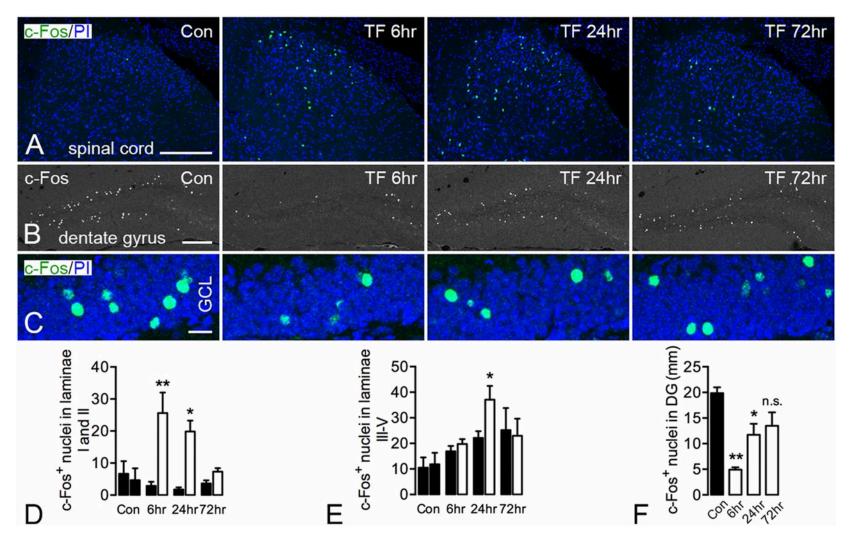
- Neuropeptide
- Widely expressed
 - Brain, spinal cord, and gut of mammals
- modulation and inhibition of action potential neurons
- DRG cells remove galanin impaired ability to extend neurites in culture
- Adult mutant mice showed 35% less capacity of regenerating the sciatic nerve after injury
- Emerged as an injury marker



NPY

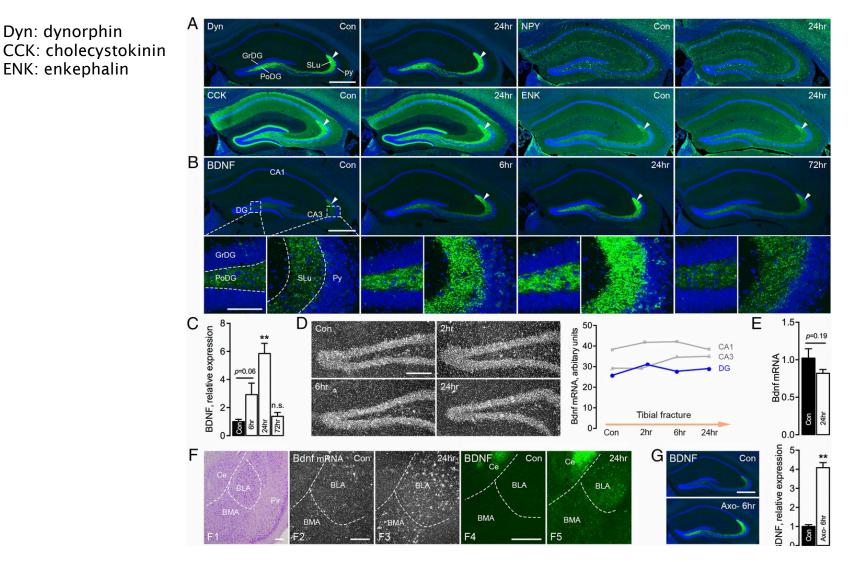
- Neuropeptide Y
- Various physiological and homeostatic functions
 - In CNS and PNS
- Synthesized in GABAnergic inhibitory neurons
- Acts as neurotransmitter
- High concentrations in hypothalamus and hippocampus
- Play an important role in cell neurogenesis in various brain parts
- known strongly upregulated in seizure

Increased expression of galanin, NPY, and BDNF in DRG neurons after unilateral tibial fracture.

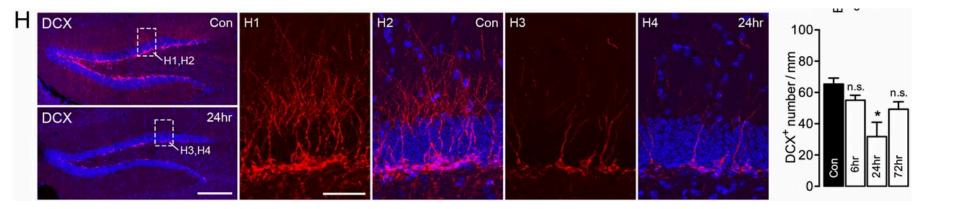


C-Fos

- Protooncogen
- Part of the transcription factor AP-1
- Indirect marker for neuronal activity
 - Because often expressed when neurons fire action potentials



Modulation of c-Fos expression in the spinal cord and hippocampal formation after unilateral tibial fracture.



BDNF and neuropeptide expression in the brain after unilateral tibial fracture.

BDNF and neuropeptide expression in the brain after unilateral tibial fracture.

- DCX (Doublecortin)
 - Microtuble associated protein

Agenda

- 1) Introduction status quo
- 2) Aims of the study
- 3) Materials/Methods
- 4) Results
- 5) Discussion
- 6) Summary Own opinion

Discussion

- Tibial fracture mice model
 - three different pain behavior levels
 - Only able to detect cold allodynia
 - Short period study?
- Other groups various cognitive tests and associated dysfunction with BDNF signaling
 - Reported decreased BDNF protein levels
 - Distinct differences
 - Species, injury model, analysis method, and time course
 - -> may explain conflicting results

Discussion

- Transferable in humans?
- Support long-term cognitive deficts from surgery?
- Limitation of rodent models
- Sex differences
 - Previous studies showed distinctions
- Future studies are needed
 - Clarify role of BDNF
 - In pain signaling and memory function

Agenda

- 1) Introduction status quo
- 2) Aims of the study
- 3) Materials/Methods
- 4) Results
- 5) Discussion
- 6) My opinion

Summary

- Comparison
 - Orthopedic surgery model
 - Classical nerve injury model (sciatic nerve transection)
- Changes in pain behaviour up to 2 weeks
- Analysis of pain-related and other markers
 - Somatosensory system
 - Brain (Hippocampus)

My opinion

- Sham group?
- Influence of stress/ anaesthesia/ anasthesia time surgery time?
- Translation into humans?
- Neuropathic pain models relevant?
- Impact on SCI patients?

THANK YOU FOR LISTENING!

ANY QUESTIONS?

Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels

Ming-Dong Zhang^{a,1}, Swapnali Barde^a, Ting Yang^{b,c}, Beilei Lei^d, Lars I. Eriksson^{b,e}, Joseph P. Mathew^d, Thomas Andreska^f, Katerina Akassoglou^{g,h}, Tibor Harkany^{a,i}, Tomas G. M. Hökfelt^{a,1,2}, and Niccolò Terrando^{b,d,1,2}

^aDepartment of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden; ^bDepartment of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; ^cDivision of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC 27710; ^dDepartment of Anesthesiology, Duke University Medical Center, Durham, NC 27710; ^eFunction Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm 171 76, Sweden; ^fInstitute of Clinical Neurobiology, University of Würzburg, 97078 Wuerzburg, Germany; ^gGladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158; ^hDepartment of Neurology, University of California, San Francisco, CA 94158; and ⁱDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria

Contributed by Tomas G. M. Hökfelt, August 25, 2016 (sent for review January 18, 2016; reviewed by Jim C. Eisenach, Ronald Lindsay, Remi Quirion, and Tony L. Yaksh)

Carmen Schwaiger MSc.