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Introduction
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• Large craniofacial defects:

• Congenital defect

• Trauma 

• Cancer resection

http://metro.co.uk/2017/07/07/man-who-lost-half-his-

face-to-cancer-successfully-has-it-rebuilt-from-parts-of-

his-legs-6761660/

https://www.3ders.org/articles/20150616-surgeons-use-3d-

printing-to-help-fix-serious-skull-defects-for-young-south-

african-girls.html



Repair of extensive defects

• Extensive defects prevent

spontanous re-ossification

• Autologous bone grafts:

• Cranium

• Tibia

• Rib

• Iliac crest

 Second surgical site

 donor site morbidity:

 Infection, pain bleeding, 

fraction etc.
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Figure 1



Autologous bone transplants
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Fibula flap

https://plasticsurgery

key.com/mandible-

reconstruction-with-

free-fibula-flap/ 

Iliac crest flap

https://www2.aofoundation.org/wps/portal/surgerymobile?co

ntentUrl=/srg/96/05-RedFix/Midface/B3/P520_03A-

IliacCrestInternalObliqueFreeFlap

Radial forearm

flap
https://openi.nlm.nih.gov/detailedresu

lt.php?img=PMC4590972_AMED2014-

795483.010&req=4



Biocompatible implants

• Drawbacks of alloplasts: 

• Rigid fixation  problem in 

children

• Great risk of infection

• Biocompatible implants:

• Osteoinductive scaffolding

• stem cells

• growth factors

 osteoblastic + endothelial

progenitor cell differentiation

 bone formation,

 integration into surrounding

bone
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Figure 2



Stem cells in bone
regeneration

• BMSCs

• Promising when seeded on 

Tricalcium-phosphate scaffold

• limited supply, donor site

morbidity

• ADSCs

• Easier to harvest, easily

expandable, similar osteogenicity

• Still invasive procedure to harvest

• UCMSCs

• Limited supply

• USCs

• Easy excess, non-invasive

• Similar to ADSCs

• Still poorly studied
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Figure 3



Urine-derived stem cells
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Genes Dis. 2014 Sep 1;1(1):8-17.Urine-derived stem cells: A 

novel and versatile progenitor source for cell-based therapy and

regenerative medicine. Zhang D1, Wei G2, Li P3, Zhou X4, 

Zhang Y5.



Urine-derived stem cells
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PLoS One. 2015 May 13;10(5):e0125253. doi: 10.1371/journal.pone.0125253. 

eCollection 2015.Human Urine Derived Stem Cells in Combination with β-TCP Can Be

Applied for Bone Regeneration.Guan J1, Zhang J1, Li H2, Zhu Z1, Guo S3, Niu X3, 

Wang Y4, Zhang C4.



Osteoinductive factors
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Table 1: Osteoinductive growth factors



Bone morphogenic proteins (BMPs)

• TGFbeta family

• Bind to multiple stem cell

types

• Osteoblastic differentiation

through Smad signaling

pathway

• FDA-approved scaffolds

containig BMP 2/7
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• Soaking scaffold in growth-

factor solution  fast release

• Incoroporated/linked to

scaffold  slow release

• Cells modified to

express/secrete

osteoinductive factors 

constant relase, but gene

transfer (virally) necessary

• Osteoiunductive small

molecules: statins, 

immunosuppressants, 

Phenamil
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Osteoinductive factors in scaffolds

• High dose requirements

• Ectopic bone formation

• Paradoxal increase of bone

resorption

• Mismatch growth factor release –

bone regeneration



Scaffolds
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Table 2: Biomaterials for tissue engineering

• Osteoconduction = capability

to provide template for bone

growth

• Osteoinduction = recruitment

of mesenchymal stell cells and

differentiation to osteoblasts

• Biocompatibility: no

inflammatory response!

• Biodegradability: scaffold = 

temporary framework, not 

prosthesis! Full resorption

necessary!

• Vascularization!



Structure and composition of natural bone
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Bone Res. 2017 Dec 21;5:17059. doi: 10.1038/boneres.2017.59. eCollection 2017.

Bone biomaterials and interactions with stem cells. Gao C1, Peng S2,3, Feng P1, Shuai C1,4,5.



Neovascularization
• Incorporation of endothelial progenitor cells (EPCs)

• Neovascularization after response to ischemia

• Mediated by pro-angiogenic factor VEGF (vascular endothelial growth factor

• Porous scaffol structure (150-500ym) necessary  material strength!

• Problem: radiotherapy in head –neck cancer
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Front Neurosci. 2013 Oct 24;7:194. doi: 

10.3389/fnins.2013.00194.

Stem cell therapy to protect and repair the 

developing brain: a review of mechanisms of action 

of cord blood and amnion epithelial derived cells.

Castillo-Melendez M1, Yawno T, Jenkin G, Miller SL.



Biomaterials for scaffold construction
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• Gold standard: autologous; donor site morbidity, limited 

supply, etc.

• Demineralized bone matrix

• Ceramics

• Polymers

• Metals

• Bioglass

• Injectable biomaterials



Demineralized bone matrix (DBM)

• Acid extraction of allogenic

bone

• Removes inorganic material, 

Collagen I framework

exposed

Osteoinductive factors

exposed = good

osteoinductivity

 Poor mechanical strength, 

porosity

• Poly (lactic acid) PLA/DBM 

composite scaffolds
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[1] Turner TM, Urban RM, Hall DJ, Cheema N, Lim TH. Restoration of

large bone defects using a hard-setting, injectable putty containing

demineralized bone particles compared to cancellous autograft bone. 

Orthopedics. 2003;26:s561-5.

stryker.com



Ceramics

• Hydroxyapatite (calcium phsophate) 

(HA)

 high osteoconductivity, safe, reliable, 

biocompatible, long shelf life

 Brittle, slow resorption

• biphasic calcium phosphate

• betaTCP

 faster resorption

• Calcium carbonate

•  good biodegradation, rapid 

resorption

 little research for larger defects

• HA/collagen composite grafts

 improved stiffness, 

osteointegration
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[1] Caddeo S, Boffito M, Sartori S. Tissue Engineering 

Approaches in the Design of Healthy and Pathological In 

Vitro Tissue Models2017.



Polymers

Natural (Collagens, Fibrins…):

 good cell adhesion, functional

support properties,  biodegradable, 

biocomptible, porosity

 Less control over mechanical

properties, sometimes

immunogenicity; expensive!

Synthetic: 

PLA (poly lactic acid), PGA (poly

glycolic acid)

 Poor osteoinductivity, PLA/PGA 

alone not suitable for scaffolds

PPF (poly propylene fumarate), 

PMMA (polymethyl methacrylate)

Polyamide (PA) 

 Excellent strength, 

biocompatibility

 Composite grafts!
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https://phys

ics.anu.edu.

au/appmath

s/capabilitie

s/xct-

gallery.php



Metals

• Titanium

Well established for implants

 Inert alloplasts, no

integration, no stimulationof

bone formation

• Magensium alloys

Good porosity and 

mechanical properties, 

strength, durability, 

osteoconductivity

• Metal nanoparticles into

polymers

• Addition of zinc + silicone

 Higher Col I-expression, 

angiogenesis, osteoblast

differentiation
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https://blog.chirurgia3d.com/en/scaffold-the-future-of-metal-

implants/



Bioglass

• Glass-ceramic

• Glass-polymer

• Silicon in glass:

Angiogenesis, growth factor

production in osteoblasts, 

stimulation of osteogenesis

 Scaffold with osteogenesis

and angiogenesis without

exogenous growth factors! 

 Brittleness, less strength

than original bone

Vera Vorstandlechner
20

[1] Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive 

glass scaffolds for bone tissue engineering: state of 

the art and future perspectives. Materials Science and 

Engineering: C. 2011;31:1245-56.



Injectable biomaterials

 Can be delivered minimal invasively

Mold to shape of complicated

defects

 Less infammation and scarring

• NIPAA

 Good thermoresponsive 

 Toxicity, nondegradability

• PPCN

 thermoresponsive, retains viable 

cells, antioxidant

• Hydrogels

Water-absorbing matrices of

hydrophilic polymers

 Well suited to carry growth factors

and stem cells

• Hydroxyapatite/calcium sulfate

pastes

 syneresis, contraction, brittleness

 Combination with other

materials/composites
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Fig. 23 Gels 2017, 3(4), 36; 

https://doi.org/10.3390/gels3040036

https://doi.org/10.3390/gels3040036


Osteoinductive molecular structure

= design priority to optimize

osteoconductive and 

osteoinductive

• Optimum: closely mimic

natural healing

• Basic structure of scaffold: 

long cylindrical unit in line

with bone´s axis

• Osteoclasts on leading end, 

osteoblasts at lagging end

 Initiate bone formation

without exogenous molecular

signals
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[1] Miron R, Zhang 

Y. Osteoinduction: A 

Review of Old 

Concepts with New 

Standards2012.



Mechanical properties of scaffolds
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[1] Fu Q, Saiz E, Rahaman MN, Tomsia AP. 

Bioactive glass scaffolds for bone tissue 

engineering: state of the art and future 

perspectives. Materials Science and Engineering: 

C. 2011;31:1245-56.

“Young's modulus, also

known as the elastic

modulus, is a measure of the

stiffness of a solid material. It

is a mechanical property of

linear elastic solid materials

(…)” (Wikipedia)

• The lower Young´s

module, the more elastic

the material

• Strength: “the strength of

material is the amount of

force it can withstand and

still recover its original

shape” (Wikipedia)



Conclusion and future directions

• Close collaboration of

material science and 

molecular biology

• Combination of materials

for optimal scaffolds

• New stem cell resources

(e.g. urine-derived)

• Advances still complicated

by drawbacks: 

scarring, osteomyelitis, 

osteonecrosis, radiation

damage

• Little research addressing

tissue engineering with

medical

comorbidities/comprised

wound healing
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Discussion

• Incidence of large defects requiring (synthetic) coverage?

• Application of scaffolds in daily clinic?

• Which scaffolds are approved in Austria?

• HA, DBM?

• Does tissue engineering play a role in clinics yet?

• Customized scaffolds via 3D-printing?
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Thank you!
Questions?


