Does Heavy Ion Therapy Work Through the Immune System?

Marco Durante, PhD, David J. Brenner, PhD, and Silvia C. Formenti, MD

Int J Radiation Oncol Biol Phys, Vol. 96, No. 5, pp. 934e936, 2016

Forms of radiation in Radiotherapy

- Protons, heavy-ions
- Electrons
- Electromagnetic radiation (photons)

Dose depth curve

Source: https://physics.stackexchange.com/questions/169665/dose-depth-curve-of-photons-vs-protons

Objective of radiotherapy

- Apoptosis
- Necrosis
- Inhibiton of proliferation

Biological effects of radiation

- Direct effects
 - DNA, membrane, enzyme alteration
- Indirect effects
 - Radiolysis
 - Water decomposition

→ Local effects!

Abscopal effect

- Ab = away, scopus = target
- Shrinking of non irradiated metastases during radiatiotherapy
- Rare

→ Systemic effect!

The paper

- Review of several other papers, i.e.
 - The future of combining carbon-ion radiotherapy with immunotherapy: Evidence and progress in mouse models.
 Int J Particle Ther 2016 (Shimokawa et al.)
 - Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell-mediated killing. Int J Radiat Oncol Biol Phys 2016;95:120-130 (Gameiro et al.)

Findings I

- Alpha radiation and photons are able to induce immunogenic modulations of irradiated tissues
 - Upregulation → abscopal effect
 - E.g. increased calreticulin translocation
 - Immunotherapy can support a stimulation of the immune system
 - Alpha radiation also modulate cancer stem cells

Findings II

- Downregulation
 - happens through accidental irradiation of lymphocytes
- Alpha radiation leads to less lymphopenia

Thank you for your attention!

Sources I

- Durante et al.: Does Heavy Ion Therapy Work Through the Immune System?
 - Doi: 10.1016/j.ijrobp.2016.08.037
 - Int J Radiation Oncol Biol Phys, Vol. 96, No. 5, pp. 934e936,
 2016
- Gameiro et al.: Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell-mediated killing. Int J Radiat Oncol Biol Phys 2016;95:120-130

Sources II

- https://physics.stackexchange.com/questions/169665/dose-depth-curve-of-photonsvs-protons
- Shimokawa et al.: The future of combining carbon-ion radiotherapy with immunotherapy: Evidence and progress in mouse models. Int J Particle Ther 2016