Article

Cell Metabolism

Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis Lean Obese Obese

Authors

Mikolaj Ogrodnik, Yi Zhu, Larissa G.P. Langhi, ..., Thomas von Zglinicki, James L. Kirkland, Diana Jurk

Research aim & interest

 Investigate the correlation between obesity, senescence, and anxiety-like behavior

Other studies:

- Removal of senescent cells improves phenotypes in mouse models of
 - Parkinson's disease (Chinta et al., 2018)
 - Tau-dependent neurodegenerative dieases (Musi et al. 2018; Bussian et al., 2018)

Obese mice show increased anxiety-like behavior not related to body mass

Methods

Methods

Fig. 1 Obese mice exhibit anxiety-like behavior

HF diet fed mice

- Less inclined to explore the central area
- Total distance covered significantly decreased in HFD animals

! Anxiety measurements were analyzed as a function of the total distance traveled during experimental testing !

Previously shown:

• Obesity impacts activity & exploratory behavior → thereby contributing to anxiety-like behavior (*Friend et al. 2017; Guillemot-Legris and Muccioli, 2017*)

Investigation of body weight & body composition in the context of anxiety-like behavior

HF diet fed mice

 No significant correlation between body weight or percentage of fat mass with anxiety-like behavior

HF diet fed mice

- Decreased entries into open arms of EPM (frequency & time)
- No significant correlations between body mass & fat mass and anxiety parameters

Fig. 1 Obese r not directly

Pharmacogenetic and Pharmacologic clearance of senescent cells alleviates obesityrelated behavioral changes

Fig. 2 Clearance of senescent cells from obese mice alleviates obesity-related behavioral changes

Fig. 2 Clearance of senescent cells from obese mice alleviates obesity-related behavioral changes

HF diet fed mice

• Avoid entries into the open arms

AP treatment in HF diet fed mice

 Increased frequency of head entries into open arms

First conclusions

Specific elimination of p16^{lnk4a+}-senescent cells from obese INK-ATTAC mice reduces anxiety-like behavior (but has no effect on memory performance)

Fig. 2 Clearance of senescent cells from obese mice alleviates obesity-related behavioral changes

Conclusive remarks

Pharmacological or pharmacogenetic clearance of senescent cells in two different mouse models of obesity significantly alleviates anxiety-like bheavior

Pharmacological and pharamacogenetic senolytic approaches reduce senescent cell burden and alleviate systemic inflammation

Methods

SA-β-Gal

- Senescence-associated beta-galactosidase activity
- Most widely used biomarker for senescent cells

p16

- Cyclin dependent kinase inhibitor
- Invovled in cell cycle arrest
- p16+ cells accumulate in age-dependent manner in multiple tissues

TAF

- Telomere-associated DNA damage foci
- Used to detect senescent cells and quantify tissue aging

p21

- Cyclin dependent kinase inhibitor
- Involved in cell cylce arrest
- Maintains viability of DANN damage-induced senescent cells

γ-H2A.X

Marker for DNA damage

Wang et al. 2018, Front Genet.; Liu et al. 2019, PNAS; Yosef et al. 2017, EMBO J.

Fig. 3 clearance of senescent cells from obese animals reduces circulating cytokine levels

Fig. 3 clearance of senescent cells from obese animals reduces circulating cytokine levels

Methods

Hypothesis

 Systemic effect of applied senolytics reduce pro-inflammatory SASP factors capable of penetrating the blood-brain barrier
 → impact on the brain

SASP

- senescence associated secretory phenotype
- "communication tool" with immune system
 → orchestrate senescent cell clearance
 → stimulation of progenitor cells to repair tic
- → stimulation of progenitor cells to repair tissue
 Chronic exposure to SASP → tissue damage contributing to tissue
- Chronic exposure to SASP → tissue damage contributing to tissu dysfunction during aging and age-related diseases

Analysis of blood plasma for SASP factors

Fig. 3 clearance of senescent cells from obese animals reduces circulating cytokine levels

Fig. 3 clearance of senescent cells from obese animals reduces circulating cytokine levels

Peripherally derived cytokines

- inhibit neurogenesis
- drive anxiety & depression

 \rightarrow Correlation of cytokine expression in bloodstream with parameters of anxiety-like behavior ?

Fig. S3 senescent cells reduce physical function

Transplanted senescent cells result in

- Physical dysfunction
 - Rotarod performance
 - Grip strength
 - Endurance
- long-lasting systemic effects in tissues distantly located to injection site

Xu et al. 2018, Nature Medicine

Fig. S3 senescent cells reduce physical function

Conclusive remarks

The presence of senescent cells elsewhere in the body is not sufficient to induce an anxiety-like phenotype

Senolytic treatment reduces the frequency of senescent cells in the amygdala and hypothalamus

But not in other regions of the brain

Markers of senescence in the brain

Hypothesis

- Obesity could induce senescence specifically in the brain
 - \rightarrow contributing to anxiety-like phenotype

Fig. S4 Markers of senescence in the brain

- No difference in senescence markers among all experimental groups (p21, p16, H2A.X, TAF)
- Consistent with absence of differences in memory and learning (assessed by Stone's maze)

Fig. 4 Markers of senescence in the amygdala are reduced after treatment with AP20187

- Significant increase in p16⁺ cells in HFD-mice
- Significant increase in TAF⁺
 neurons in HFD mice
- Significant reduction of p16⁺ and TAF⁺ cells upon AP treatment

Fig. 4 Markers of senescence in the amygdala are reduced after treatment with AP20187

Hypothalamus

- Significant increase in TAF⁺ cells in HFD mice
- Significant reduction of TAF⁺ cells upon AP treatment

Conclusive remarks

HFD does not induce senescence in regions of the brain implicated in learning, memory or motor neuron control (cortex, cerebellum, hippocampus)

HFD induces senescence in the hypothalamus and amygdala which may contribute to anxiety-like behavior

Treatment with AP reduced senescent cell abundance

Clearance of senescent cells decreases periventricular acc. of lipid-laden glia in obese animals

Senescent cells induce lipid accumulation in the brain

- Senescent cells accumulate in obesity → prevalence related to accumulation of ectopic fat
- Cells accumulating lipid droplets in the brain occur in close proximity to ventricles
 - # of cells increases with age in Alzeheimer's disease & respective mouse models

Ogrodnik et al. 2017, Nat. Commun. ; Shimabukuro et al. 2016, Sci. Rep. ; Hamilton et al. 2015, Cell Stem Cell

Analysis of perilipin 2 (Plin2) in the brain

• Plin2 = protein surrounding lipid droplets

MEDICAL UNIVERSITY OF VIENNA

Conclusive remarks

Data suggest correlation between the accumulation of lipid-laden secescent glial cells in obese animals and anxiety-like behavior

Suppression of the ALISE phenotype reduces acc. of cytosolic chromatin fragments and the SASP

ALISE = accumulation of lipids in senescence

Hypothesis

• Enhanced lipid deposition impacts CCF and SASP

Significant reduction of several key components of SASP (IL-6, Kc (CxCl-1), Ip-10 (Cxcl-10) and Lix (Cxcl-5)

Primary mouse astrocytes (as confirmation for MAF)

- Increased fat buildup
- Increased TAF
- Increased # of CCF in senescent astrocytes

Conclusive remarks

Data suggest that excessive ALISE may be a contributor of genomic instability

resulting in the release of chromatin fragments and activation of SASP

Impaired neurogenesis in HFD animals is rescued by clearance of senescent cells

- Ectopic buildup of lipid droplets in AD brains
 - Induces dysfunction of neuronal stem cells within the subventricular zone (SVZ)
 - Suppresses adult neurogenesis
 - Causes cognitive impairment

Hamilton et al. 2015, Cell Stem Cell

Hypothesis

• Presence of ALISE glial cells could impair adult neurogenesis in the SVZ

Methods

Fig. 7 Clearance of senescent cells partially reverses the neural progenitor cell depletion induced by obseity

HF diet mice

Significant decrease of

- Neuronal precursor cells (Nestin)
- Immature neurons (Dcx)
- Ependymal cells (CD133)

HF diet mice + AP treatment

Significant increase of

- Neuronal precursor cells
- Immature neurons
- Ependymal cells

MEDICAL UNIVERSITY OF VIENNA

Fig. 7 Clearance of senescent cells partially reverses the neural progenitor cell depletion induced by obseity

Dcx staining in olfactory bulb

HF diet mice AP treatment partially "rescued" loss of Dcx+ immature neurons

atticle w AP vehicle AP

15

10

5

Fig. 7 Clearance of senescent cells partially reverses the neural progenitor cell depletion induced by obseity

Negative correlation of Plin2⁺ cells and adult neurogenesis markers (Nestin = neuronal precursor cells, Dcx = immature neurons)

Positive correlation of distance travelled in the central zone and frequencies of detected neurogenesis marker positive cells (*Nestin = neuronal precursor cells, Dcx = immature neurons*)

Conclusive remarks

Data indicate a causal role for senescent cells in obesity induced neurogenesis

targeting senescent cells in obese mice alleviates obesity-related anxiety-like behaviour by clearance of periventricular fat accumulation and restoration of adult neurogenesis

 Anxiety-like behavior is not simply caused by increased body mass

Canetti et al. 2016, Cunningham et al. 2012, Fisher et al. 2017, Kouidrat et al. 2017, Matini et al. 2014

• HFD induces senescence in multiple organs

Schafer et al. 2016, Tchkonia et al. 2010, Xu et al. 2015, Ogrodnik et al. 2017

 Senescent glial cells involved in neurodegenerative diseases (tau-dependent pathology, Parkinson's disease)

Bussian at al 2018, Chinta et al 2018, Musi et al. 2018

- Senescent, pro-inflammatory glial cells frequently found in close proximity to brain areas expressing markers of neuronal precursor cells & immature neurons
 → negative effect of senescent cells on stem cells
- Increased SASP factors in blood plasma and brain during obesity
 - Reduced upon pharmacogenetic & pharmacologic clearance

Anxiety-like phenotype driven by obesity may be a result of senescence occurring in specific regions of the brain

- Clearance of senescent cells in obese mice partially restores the neural stem cell pool
- Neg. correlation of neurogenesis marker and anxiety-like behaviour

Anxiety itself may impair neurogenesis

- Senescent glial cells accumulate lipids
 - Phenotype: ALISE
 - Accumulation of lipid droplets in SVZ occurs in mouse models of Alzheimer's Disease & human Alzheimer's patients Hamilton et al. 2015
- Presence of lipid-containing senescent cells contributes to impaired neurogenesis
 (rather than accumulation of lipids per se)

(rather than accumulation of lipids per se)

• Elimination of senescent cells improves neurogenesis & alleviates mouse anxiety-like behavior

Main conclusion

MEDICAL UNIVERSITY OF VIENNA

General remarks

- Some conclusions are based on data that is not shown
- Some sentences/explanations don't make sense e.g. "Interestingly, clearance of senescent cells led to a significant increase in the population of astrocytes in obese animals, whereas no differences between lean and obese animals were detected."
- Figure description is relatively sparse
- Insane amount of supplementary figures without any explanation or description
- Experimental study doesn't distinguish which senescent cell type is responsible for inducing anxiety-like behavior

Adapted from Schoettl et al. 2018, Journal of Experimental Biology

