## Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology

Priya Rangan et.al. Published in Cell Reports 03/2019

Impact Factor: 7,815 (2018/19)

Presented by: Dragan Copic, PhD student



#### Content

- Introduction/Background Information
- Materials and Methods
- Results

Conclusion



## Inflammatory Bowel Disease (IBD)

| Ulcerative Colitis                             | Crohn's Disease                        |
|------------------------------------------------|----------------------------------------|
| Restricted to Rectum/Colon                     | Whole GIT can be affected              |
| Primary manifestation: rectum                  | Primary manifestation:<br>lleum/Caecum |
| Continuous spread                              | Discontinuous spread                   |
| Inflammation is restricted to mucosa/submucosa | Transmural inflammation                |
| Rarely stenosis                                | Stenosis                               |
| Rarely Fistula                                 | Fistula                                |



## Inflammatory Bowel Disease

- Considered multifactorial diseases (non-dietaray and dietary risk factors)
- Characterized by chronic intestinal inflammation
- Prevalence of IBD is highest in the second to third decade of life
- clinical characteristics of IBD are

   hemorrhagic diarrhea
   abdominal pain
   weight loss, anorexia
- Extraintestinal manifestations involve: Arthritis, uveitis, fever, erythema nodosum

## Inflammatory Bowel Disease

- IBD is an immune-mediated disease
- The food and microbial flora within the intestine represent a enormous antigenic load
- Normal flora influences the maintenance of intestinal immunological homeostasis
- Microbial flora affects immune processes
  - secretion of antimicrobial peptides
  - regulatory and effector immune cells
- An altered balance of commensal pathogenic microbiota could lead to a pro-inflammatory milieu that exacerbates intestinal inflammation

## Immunological Basis of IBD



Francesca A. et al. The Immunological Basis of Inflammatory Bowel Disease, Gastroenterology Research and Practic , 2016



## Materials and Methods

- Chronic dextran sodium sulfate (DSS)-induced mouse model
- C57BL/6J (8 weeks old)
- 1DSS cycle = 5 consecutive days of 2% w/w Dextran sulfate sodium salt followed by 9 days of purified water
- After 33 days random-assignement to experimental groups
   → single-housing for the remainder of the experiment
  - two 2-day water only fasts or two 4-day FMD fasting cycles
- After the respective fasting cycles mice were fed with standard rodent chow



## Disease Acticity Index (DAI) Scoring

| Score | Body weight<br>loss | Stool consistency                               | Rectal bleeding (Hemoccult)                                    |  |
|-------|---------------------|-------------------------------------------------|----------------------------------------------------------------|--|
| 0     | no weight loss      | solid pellets                                   | ellets No sign                                                 |  |
| 1     | 1%-5%               | soft but adherent in pellet<br>shape            | Hemoccult positive                                             |  |
| 2     | 5%-10%;             | loose stool but with some solidity              | Hemocult positive with visible pellet bleeding                 |  |
| 3     | 10%-20%             | loose stool with signs of liquid<br>consistency | Hemoccult positive with visual pellet and rectal bleeding      |  |
| 4     | greater than 20%    | diarrhea                                        | Hemocult positive with gross visual pellet and rectal bleeding |  |



## Mouse fasting mimicking diet

 first day of FMD, mice consumed 50% of their normal caloric intake (8.08 kJ/g; 0.56 kJ fat, 0.68 kJ carbohydrates, 0.11 kJ protein)

 From the second through fourth days of FMD, mice consumed 10% of their normal caloric intake (1.10 kJ/g; 0.27 kJ carbohydrates)

 flavored broth mixes, extra virgin olive oil (EVOO), essential fatty acids, vegetable powders vitamins, and minerals were thoroughly mixed and bound together with heated hydrogel



# Fecal transplant and Lactobacillus transplant models

- ceca contents were removed from naive and chronic DSSinduced mice (with or without FMD treatment)
   → aseptically flushed into a sterile 50% glycerol/PBS solution
- Lactobacillus rhamnosus GG 5x10<sup>7</sup> cfu/mouse/day





## Human FMD Trial

- 100 participants (generally healthy adult volunteers and 18 to 70 years of age; BMI, 18.5 and up) without a diagnosed medical condition in the previous 6 months were enrolled
- Instructed to consume the FMD for 5 continuous days and to return to their normal diet until the next cycle that was initiated approximately 25 days later
- Participants completed three cycles of this 5-day FMD
- Blood drawn at baseline (A), end of the first FMD (B) and after 5 to 7 days of normal caloric intake after the third FMD cycle (C)
- WBC and lymphocyte data was stratified post hoc with Creactive protein levels < 1 mg/L (normal risk group) versus subjects with > 1 mg/L CRP (elevated risk group) at baseline.



## **Further Examinations**

- Colon Inflammation scoring in H&E tissue sections
- Immunohistochemystry, Immunofluorescence
- FITC Dextran permeability
- FACS analyses for different immune cell populations
- Cytokines profiling
   Serum, colonic supernatant, and colonic tissue homogenate
- Microbiome sequencing



## Results

- FMD Cycles Ameliorate IBD-Associated Phenotypes
- FMD Cycles Alter Immune Cell Profile to Reduce Intestinal Inflammation
- FMD Stimulates an Increase in Microbial Strains Known to be Associated with T-Cell Regulation and Gut Regeneration
- Fecal Transplant from FMD-Treated Mice Promotes Positive Changes in IBD-Associated Symptoms
- FMD Cycles Reduce IBD-Associated Inflammation in Humans and Mice, in Part, by Modulating White Blood Cell Counts



## FMD Cycles Ameliorate IBD-Associated Phenotypes I





#### FMD Cycles Ameliorate IBD-Associated Phenotypes II





F

#### FMD Cycles Alter Immune Cell Profile to Reduce Intestinal Inflammation





### **FMD** Promotes Intestinal Regeneration I





### **FMD** Promotes Intestinal Regeneration II





#### FMD Stimulates an Increase in Microbial Strains known to be Associated with T-Cell Regulation and Gut Regeneration



Sample



| Table 1. Top 8 Most Abundant Families among the Naive, DSS, DSS+FMD, and DSS+WF Groups |                 |                 |                   |                  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|------------------|--|--|--|
| Family                                                                                 | Naive Mean (SD) | DSS Mean (SD)   | DSS+FMD Mean (SD) | DSS+WF Mean (SD) |  |  |  |
| S24-7                                                                                  | 51.6 (9.08)     | 64.6 (9.46)     | 27.5 (7.9)        | 34.5 (6.72)      |  |  |  |
| Lactobacillaceae                                                                       | 17.8 (14.2)     | 15.5 (8.36)     | 45.2 (4.2)        | 25.8 (3.97)      |  |  |  |
| Erysipelotrichaceae                                                                    | 1.87 (2.41)     | 0.565 (0.226)   | 10.5 (5.71)       | 0.286 (0.184)    |  |  |  |
| Turicibacteraeae                                                                       | 1.25 (2.78)     | 4.1 (4.83)      | 2.84 (3.63)       | 2.17 (2.59)      |  |  |  |
| Verrucomicrobiaceae                                                                    | 5.65 (9.98)     | 1.57 (1.37)     | 3.65 (2.88)       | 3.5 (1.05)       |  |  |  |
| Lachnospiraceae                                                                        | 2.18 (0.801)    | 2.83 (1.96)     | 1.16 (0.756)      | 5.42 (3.32)      |  |  |  |
| Ruminococcaceae                                                                        | 2.09 (1.97)     | 2.36 (0.783)    | 0.568 (0.308)     | 4.81 (3.09)      |  |  |  |
| Bacteroidaceae <sup>a</sup>                                                            | 0.409 (0.257)   | -               | -                 | -                |  |  |  |
| <i>Bifidobacteriaceae<sup>b</sup></i>                                                  | -               | 0.0346 (0.0384) | 2.67 (3.56)       | -                |  |  |  |
| [Paraprevotellaceae] <sup>c</sup>                                                      | -               | -               | -                 | 6.13 (0.148)     |  |  |  |

Related to Figures 4 and S3 and Tables S1–S6.

<sup>a</sup>Not ranked in top 8 most abundant families for DSS, DSS+FMD, and DSS+WF groups.

<sup>b</sup>Not ranked in top 8 most abundant families for Naive and DSS+WF group.

<sup>c</sup>Not ranked in top 8 most abundant families for Naive, DSS, and DSS+FMD groups.



#### Fecal Transplant from FMD-Treated Mice Improves IBD-Associated Phenotypes



#### Fecal Transplant from FMD-Treated Mice Alters Immune Cell Profile and stimulates Regeneration in the Colon I





#### Fecal Transplant from FMD-Treated Mice Alters Immune Cell Profile and stimulates Regeneration in the Colon II





# White Blood Cell (WBC) and Lymphocyte Counts in Humans and Mice with Systemic Inflammation



**DSS-Treated** 

DSS-Treated



## Discussion

- Dietary interventions have high potential to ameliorate and possibly reverse CD and ulcerative colitis
- Two cycles of a 4-day FMD followed by a normal diet are sufficient to mitigate some, and reverse other, IBDassociated pathologies or symptoms through modulation of the gut microbiome
- Certain nutrients in the FMD contribute to the microbial and anti-inflammatory changes necessary to maximize the effects of the fasting regimen
- fasting alone is not sufficient to reverse the pathology associated with IBD, but it is its combination with certain ingredients that is effective



## Discussion

- growth and replacement of damaged intestinal tissues occur strongly during the re-feeding post-FMD
- They hypothesize that FMD cycles can first reduce the inflammation associated with IBD and subsequently promote regeneration during the refeeding stage



## Thank you for your attention

