Immunity

CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity

Authors

Álvaro Teijeira, Saray Garasa, María Gato, ..., Pedro Berraondo, Jose L. Perez-Gracia, Ignacio Melero

Journal Club 03.05.2021

Neutrophils and Cancer

- Pro-tumorigenic
 - Pro-angiogenic
 - Immunosuppressive
- Presence of tumor-infiltrating neutrophils = poor prognosis
- Granulocytic Myeloid-Derived Suppressor Cells (GR-MDSCs)
 - Subset of neutrophil-like cells
 - T-cell suppressive functions
 - Expanded in cancer-bearing hosts

CXCR1 and CXCR2

- Expressed on Neutrophils & GR-MDSCs
- CXCR1 \rightarrow CXCL6 and CXCL8
- CXCR2 → CXCL1 CXCL7 chemokines; sharing ELR motif
- ELR⁺ CXCL chemokines recruit myeloid cells to tumors (mostly Neutros)
- CXCL1, CXCL2, CXCL8 produced by cancer cells
- CXCR1 / CXCR2 inhibition = promoted T cell response against tumors due to limited GR-MDSC or Neutrophil infiltration

Do Neutrophil Chemoattractants induce NETosis in Neutrophils and GR-MDSCs?

Treatment of

- Healthy donor Neutrophils
- GR-MDSCs from cancer patients
- Mouse GR-MDSCs from mice bearing 4T1 tumors

with

- Chemoattractants
- +/- Pertussis Toxin (Ptx) as G_i subunit inhibitor
- +/- Reparixin (Rep) as specific allosteric CXCR1 and CXCR2 inhibitor

Fig.1 Neutrophil Chemoattractants induce NETosis in Neutrophils and GR-MDSCs

MEDICAL UNIVERSITY

OF VIENNA

- a. Reduced NETosis upon G_i
 subunit inhibition (PTX)
- b. Chemokine-induced NETosis acting via CXCR1 / CXCR2 → reduced upon PTX treatment

Reparixin reduced CXCR1 / CXCR2 dependent NET induction

Fig.1 Neutrophil Chemoattractants induce NETosis in Neutrophils and GR-MDSCs

Klas Katharina

MEDICAL UNIVERSITY

- a. Reduced NETosis upon G_i subunit inhibition (PTX)
- b. Chemokine-induced NETosis acting via CXCR1 / CXCR2 → reduced upon PTX treatment

Reparixin reduced CXCR1 / CXCR2 dependent NET induction

- c. similar results in GR-MDSCs
- d. from cancer patients as seen
- e. in Neutrophils
- f. Mouse GR-MDSCs from 4T1
- g. tumor bearing mice showed similar activation pattern as human Neutros or GR-MDSCs

Do Tumor-derived Factors Induce NETosis in Neutrophils and GR-MDSCs by Activating CXCR1 and CXCR2 Receptors?

Treatment of

- Healthy donor Neutrophils
- GR-MDSCs from cancer patients

with

 Culture supernatant of five different primary melanoma cell lines and one colon carcinoma cell line (HT29)

Generation of 3D tumor spheroids with Neutrophil co-culture

Fig.2 Tumor-derived Factors Induce NETosis in Neutrophils and GR-MDSCs by Activating CXCR1 and CXCR2 Receptors

HT29

- a. CM^{hi} = potent NET inducer (independent of cancer cell line)
 both, Ptx and Rep = potent inhibitors
- Anti-CXCR1 antibody could abolish NETinducing capacity of cancer cell line CM^{hi}
 - similar results in GR-MDSCs upon Reparixin induced CXCR inhibition

MEDICAL UNIVERSITY

OF VIENNA

Fig.2 Tumor-derived Factors Induce NETosis in Neutrophils and GR-MDSCs by Activating CXCR1 and CXCR2 Receptors

Co-culture of 3D spheroids with Neutrophils induced NETosis

NETosis could be prevented by Reparixin treatment

HT29 Spheroids in Co-culture with Human Neutrophils

HT29/ CMRA Neutrophils/ Cell Tracker Deep Red NETs/ Sytox Green

10 hours video. 450x accelerated

Klas Katharina

To visualize the presence of NETs inside tumors

- 4T1 bearing mice
 - treated for 20h with either Ptx or Reparixin
- citH3 & Ly6G staining in tumor tissue samples

Fig. 3 Tumors Induce NETosis by activation of CXCR1 and CXCR2 Chemokine Receptors

- a. Ptx and Reparixin
- b. treatment sign. Reduced
 NETs presence within tumors
- c. CXCR1 /CXCR2 inhibition did not alter GR-MDSC infiltrates
- d. GR-MDSC presence was not altered by Ptx or Rep treatment

Can human tumors induce NETosis?

- Subcutaneous xenograft of HT29 tumor cells in Rag2^{-/-} IL2rg^{-/-} mice (lacking T-cells and NK-cells)
- Human pre-stained Neutrophils were injected intratumorally +/- Ptx
 - +/- Reparixin
- 24h later \rightarrow tumors were excised and analyzed
- 5min prior euthanasia: mice received SYTOX green systemically

Fig. 3 Tumors Induce NETosis by activation of CXCR1 and CXCR2 Chemokine Receptors

Is cytotoxicity impaired by NETs shielding cancer cells?

- 3D spheroids grown for 3 days
- Neutrophils added to spheroids +IL-8 / +PMA to induce NETosis or as control: +IL-8 / +PMA, + DNasel
- Co-culture of effector cytotoxic lymphocytes with NET-covered tumor cells
 - IL-15 activated NK cells
 - CD3 plus CD28 activated CD8⁺ T cells

Fig. 4 NETs Inhibit Immune Cell Cytotoxicity by Impeding Contact with Tumor Cells

Higher numbers of surviving tumor cells in presence of NETs

independent of NET-stimulus or effector lymphocytes

Fig. 4 NETs Inhibit Immune Cell Cytotoxicity by Impeding Contact with Tumor Cells

Do NETs shield tumor cells from contact with cytotoxic immune cells?

- Time-lapse confocal microscopy (same co-cultures as before)
- NETs generated over chemotaxis transwells to see whether they directly impari CD8⁺ T cell migration

Fig. 4 NETs Inhibit Immune Cell Cytotoxicity by Impeding Contact with Tumor Cells

less lymphocyte-tumor cell contacts in presence of NETs

DNAse

Fig. 4 NETs Inhibit Immune Cell Cytotoxicity by Impeding Contact with Tumor Cells

Less CD8+ T cell migration over chemotaxis transwells towards CCL5 in presence of NETs

Restoration of chemotaxis by DNasel treatment

Do NETs influence immune-cell control of tumor metastasis?

- Lung metastasis mouse model in mice bearing 4T1 bilateral tumors
 - WT BALB/C
 - Rag1 -/- (lack T cells)
 - Rag2 -/- IL2rg -/- (lack T cells and NK cells)
- Intravenous injection of 4T1 mCherry tagged tumor cells

Fig. 5 NETs Limit Immune Response and Checkpoint-Based Immunotherapy against 4T1 Tumors

DNasel treatment and PAD4 inhibition could sign. reduce the number of lung mCherry⁺ 4T1 micrometastases 24h post IV injection

in WT and Rag1-/- but not in Rag2^{-/-} IL2rg^{-/-} mice

Selective NK cell depletion showed similar results

→ Indication that NK cells are capable of controlling early stages of metastases

Fig. 5 NETs Limit Immune Response and Checkpoint-Based Immunotherapy against 4T1 Tumors

IP treatment with PAD4 inhibitor minimally decreased tumor progression

Combination of PAD4 inhibitor and anti-PD-1 plus anti-CTLA-4 checkpoint inhibitors showed sign. reduction in tumor progression

PAD4-immune checkpoint tumor suppression is CD8⁺ T cell dependent

Intravital microscopy of NETs imparing NK and T cell –tumor contact

- IVM of liver and subcutaneous tumors located in ear dermis
- Mice with subcutaneous Lewis-Lung-Carcinoma (LLC) tumors received fluorescent labelled LLCs intrasplenically
- Similar experiment but in recipient mice with GFP labelled NK cells or RFP labelled T cells

Fig. 6 NETs Impair Cytotoxic Cell Contact with Tumor Cells in the Metastatic Intravascular Niche

g. NETs

А

MEDICAL UNIVERSITY OF VIENNA

IVM simultaneous comparison of CTLs in NET-rich and NET-lacking areas

- 4T1 mCherry tumors implanted into ears of mice carrying 4T1 tumors in the flank
- Due to uneven SYTOX (=NETs) distribution → simultaneous comparison of CTL behavious possible
- Injection of B16OVA-H2BmCherry tumors in ears of mice adoptively transferred fluorescently labelled OT-I CD8⁺ T cells (recognizing OVA)
- Direct injection with human pre-stained NETs

Fig. 7 NETs Impair Cytotoxic Cell Contact with Tumor Cells in Subcutaneous Tumors

Uneven NETs distribution; not necessarily coating tumor cells

Fig. 7 NETs Impair Cytotoxic Cell Contact with Tumor Cells in Subcutaneous Tumors

Ε

NETs surrounding tumor cells prevented OTI cells from contacting tumor cells

NET-rich areas showed imparid T cell-tumor cell contact

С

NET

no NET

0.0015

40 30 20 NET rich area

T Cells/LLC Tumor cells/NETs(NE activity)

NET surrounded cell

B16 OVA H2BmCh/NET(Sytox Green)/OTI Cells

LLC GFP tumor cells (green) implanted in the ear of hCD2RFP mice (T-cells, Red) in the presence of NE fluorescent substrate to visualize NETs(blue)

Discussion

- Tumor-derived CXCR1 and CXCR2 ligands trigger NETosis in human and mouse Neutrophils and GR-MDSCs
- NETs protect tumor cells from cytotoxic T lymphocytes and NK cytotoxicity

Discussion

- Inhibition of NETosis, via PAD4 inhibition, sensitizes tumors to immune checkpoint therapy (PD-1+CTLA-4)
- NETs impair contact of immune cells with tumor cells in mice

