Senolytic CAR T cells reverse senescence-associated pathologies

Corina Amor^{1,2,12}, Judith Feucht^{3,4,12}, Josef Leibold^{2,12}, Yu-Jui Ho², Changyu Zhu², Direna Alonso-Curbelo², Jorge Mansilla-Soto^{3,4}, Jacob A. Boyer^{1,5}, Xiang Li^{2,6}, Theodoros Giavridis^{3,4}, Amanda Kulick⁵, Shauna Houlihan², Ellinor Peerschke⁷, Scott L. Friedman⁸, Vladimir Ponomarev⁹, Alessandra Piersigilli¹⁰, Michel Sadelain^{3,4} & Scott W. Lowe^{2,11}

<u>Nature</u> 583, 127–132 (2020) Cite this article

52k Accesses | 231 Citations | 684 Altmetric | Metrics

Impact factor 2020: 49.9

Maria Höhrhan, MSc (1st year PhD student)

JC Current Topics in Applied Immunology - 4th April 2022

Maria Höhrhan Klinisches Institut für Labormedizin (Kralovics lab)

Chimeric antigen receptor (CAR) T cell therapy

https://www.cancer.gov/publications /dictionaries/cancer-terms/def/car-tcell-therapy

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

Structure of chimeric antigen receptors

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

Rationale of the study

- Age-related pathologies such as liver and lung fibrosis, atherosclerosis, DM2 and osteoarthritis
- In these diseases, aberrant accumulation of senescent cells generates an inflammatory milieu

Proposed solution:

Elimination of senescent cells via CAR T cells

Identification of a cell senescence-specific target

- uPAR (urokinase-type plasminogen activator receptor)
- High expression on senescent cells but also on bronchial epithelium, monocytes, macrophages and neutrophils
- Promotes processes in wound healing but also tumorigenesis
- suPAR (soluble uPAR)

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

Design of uPAR-specific CARs

m.uPAR-h.28z

m.uPAR-m.28z

5' LTR m.CD8a	a-mouse uPAR scFv	Myc-Tag	mCD28	mCD3z	3' LTR
---------------	-------------------	---------	-------	-------	--------

uPAR-specific CAR T cells remove senescent cells *in vitro* and *in vivo* (1/2)

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

uPAR-specific CAR T cells remove senescent cells *in vitro* and *in vivo* (2/2)

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

No significant off-target effects of uPAR-specific CAR T cells

HE staining of lung tissue :

Blood counts:

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

Senolytic CAR T cells show therapeutic efficacy in CCl4induced liver fibrosis (1/2)

Maria Höhrhan Amor, Feucht and Leibold et al., Nature (2020)

Senolytic CAR T cells show therapeutic efficacy in CCl4-induced liver fibrosis (2/2)

Senolytic CAR T cells show therapeutic efficacy in NASH *in vivo*

NASH = non-alcoholic steatohepatitis

Maria Höhrhan Amor, Feucht and Leibold *et al., Nature (2020)*

Discussion

• Senolytic CAR T cells **reverse** senescence-associated pathologies – REALLY?

- No studies on what happens after CAR T cell therapy in the tissues
- Really no off-target effects?
- Is the exorbitant price of CAR T cells justifiable for treatment of these non-life threatening diseases?
- There are other therapy options for senescence-related diseases that are more convenient for the patient and are more reasonably priced

Thank you for your attention!

