Daratumumab Prevents **Experimental Xenogeneic Graft-Versus-Host Disease by Skewing Proportions of T Cell Functional** Subsets and Inhibiting T Cell **Activation and Migration**

Gao et al., Front. Immunol., 2021

Daratumumab

- monoclonal antibody
- humanized
- targets CD38 epitope
- killing ability against tumor cells through
 - complement dependent cytotoxicity
 - antibody dependent cellular cytotoxicity
 - antibody-dependent cellular phagocytosis
 - Fc-mediated crosslinking

Indication

• Relapsed and newly diagnosed multiple myeloma

Multiple myeloma

Overview

- 1 % of cancer deaths in Western countries
- peak age of incidence of 65 to 70 y
- genetically heterogenous

Pathogenesis

- neoplastic plasma cells
- dependent on IL-6
- accumulation in bone marrow

 \rightarrow cell mediated bone destruction lesions of 1 to 4 cm diameter

Holzgreve, H. "Schrotschussschädel" zeigt multiples Myelom an. *MMW - Fortschritte der Medizin* **160**, 34 (2018).

CD38

- type II transmembrane glycoprotein
- activation marker of T lymphocytes
- expressed on T and B lymphocytes and macrophages
- function as
 - enzyme
 - cell adhesion molecule
 - cell surface receptor
- Regulation of extracellular adenosine

- metabolizes NAD⁺ to adenosine 59-diphosphate-ribose (ADPR) and cyclic ADP-ribose (cADPR)
 - \rightarrow mobilization of Ca²⁺

May function as an immune checkpoint molecule!

Previous studies

- CD38 is emerging therapeutic target in autoimmune diseases
 - rheumathoid arthritis
 - systemic lupus erythematosus
 - asthma
 - neurodegeneration
 - inflammatory bowel disease
- incidence of GVHD in relapsed multiple myeloma patients after allogeneic hematopoietic cell transplantation (allo-HCT) only 15 % in patients treated with Daratumumab

CD38 as potential target against alloreactive T cells in GVHD

Graft-versus-host disease (GVHD)

- most common complication after allo-HCT
- major cause of mortality and morbidity in patients
- 30 50 % of allo-HCT develop acute GVHD
- attack of recipient host cells by allo-reactive donor cells
 - inflammatory cytokines \rightarrow acute or chronic tissue damage

state-of-the-art therapy

- suppressive calcineurin inhibitors combined with
 - methotrexate
 - sirolimus
 - mycophenolate mofetil
- graft-versus-leukemia effects impaired
- corticosteroids first-line treatment of acute GVHD
- 35 50 % of patients refractory

Xenogenic model of GVHD (1)

- NOD-Prkdc^{scid}/IL2rg^{tm1}/Bcgen (B-NSG/B-NDG) mice
 - T and B cell deficiency (interruption of commom gamma-chain)
 - lacks NK cells
 - deficiency in cytokine signalling
- sublethal irradiation on day -1
- i.v. injection of 1×10^7 hPBMCs from healthy volunteers on day 0

 engraftment of human cells was detected in peripheral blood samples 7, 14 and 21 days after injection

Xenogenic model of GVHD (2)

- i.p. injection of Daratumumab (5 mg/kg) once a week from day 0 for two weeks post transplantation
- control group: human IgG control antibody
- six to eight mice; three experiments

Score

- weight loss
- posture
- activity
- skin integrity
- fur ruffing
- Scale of 0 to 2
- euthanized at score of 6 or loss of 25 % body weight

Survival was significantly longer in mice treated with Daratumumab

median survival

- control group: 18 days
- Dara: 70 % over 50 days
 - less weight loss
 - lower GVHD scores

- irradiation
- 1 x 10⁷ hPBMCs
- 5 mg/kg Dara
- weekly administration

Control group mice had significantly enlarged spleens and evident tissue damage
 Control Dara

euthanized 14 days post transplantation

- histological evaluations of lung and liver
- HE and HuCD45 staining

control group

- lymphoid infiltration
- endotheliitis
- parenchymal alterations
- hepatocyte apoptosis

Daratumumab treatment

subnormal histology

Confirmation by blinded evaluation of histopathological scores for lung and liver and flow cytometry analysis

- blinded evaluation 14 d post transplant
- Analysis of splenocytes, lung and liver
- rate of human/mouse leukocytes significantly lower in Dara-treated group (n = 8)

G

Control Dara

Mice CD45

Human CD45

Dara reduced human T cell infiltration in GVHD targeted organs lung and liver

- proportion of CD3⁺ cells in splenocytes reduced in Dara-treated mice
- reduced inflitration of CD3⁺, CD4⁺ and CD8⁺T cells in lung and liver

Dara-treatment influenced proportion of T cell subsets (1)

- reduced frequency of CD8⁺ T cells
- higher frequency of CD4⁺ T cells
 - \rightarrow lower ratio of CD8⁺ / CD4⁺ cells

Dara-treatment influenced proportion of T cell subsets (2)

- only due to anti-proliferative effect of drug?
- KI67 staining
- reduction of KI67⁺ cells in both subsets
 - \rightarrow proliferation reduced in CD4⁺ and CD8⁺ cells

Only caused by Dara-mediated apoptosis of CD8+ T cells?

• Dara had no significant effect of induction of apoptosis in T cells

Evaluation of activation status of Dara-treated T cells

- CD38 is a commonly used activation marker of T cells
- influence of Daratumumab on expression of CD69?

 \rightarrow significantly decreased frequency of CD69⁺ cells in CD8⁺ cells

Daratumumab mainly inhibits CD8+T cell activation

Daratumumab showed impact on CD8⁺ T cell differentiation

- Analysis of differentiation from naive to memory/effector phenotypes
- evaluation of markers CD45RA/CCR7
- naive and central memory (Tcm) CD8⁺ cell count enhanced
- decreased effector memory T cells (Tem)
- no change in effector T cells (Teff)
- no inhibitory effect on CD4⁺ T cell differentiation

Regulatory T cells (Tregs) play an important role in GVHD

- Tregs have immunosuppressive funtion in GVHD
- analysis of proportions of Tregs and follicular regulatory T cells (Tfr)
 - Tregs CD4+ CD25+ FoxP3+
 - Tfr CD4+ CXCR5+ FoxP3+

Daratumumab may alleviate xeno-GVHD by increasing frequency of immunosuppressive cells

Validation of *in vivo* findings in human *in vitro* experiments

- cultivation of human T cells for 48 h at 50 $\mu g/mL$ Daratumumab
- no effect on apoptosis
- no inhibition of proliferation
- KI67 expression similar in Dara and control group
- decreased frequencies of CD69⁺ cells
- <u>T cell differentiation not influenced</u>
- significantly higher frequencies of Tregs

Validation of *in vivo* findings in human *in vitro* experiments

Impact of Daratumumab on cellular pathways

- Transcriptome sequencing of sorted human CD3⁺ T cells engrafted into spleens (n = 3)
- 358 genes significantly differentially expressed (log2 ratio \geq 1, q < 0.005)
- pathway analysis
 - immune response
 - chemokine-mediated singnalling pathway
 - cytokine-mediated singnalling pathway
 - chemotaxis
 - cell adhesion
 - positive regulation of IFNy production

Rich Ratio

Daratumumab alters T cell immune reaction at gene expression level (1)

- T cell immune reaction most altered at gene expression level
- decreased expression of TF involved in:
 - T cell cytotoxic reaction
 - Type 1 T cell differentiation
 - T-bet
 - RUNX3
 - activation/immune response markers
 - CD28
 - increased expression of TF of Treg and Tfr
 - FOXP3

Daratumumab alters T cell immune reaction at gene expression level (2)

- decreased expression
 - cytotoxic effector molecules
 - cytokines
 - chemokines
 - chemoattractant receptors

- increased expression
 - IL17
 - CXCR5 \rightarrow Tfr cells

Daratumumab modulates metabolic pathways of T cells

- Human T cells cultured in vitro
- CD38 determines intracellular levels of NAD+
- Dara modulates
 - purine metabolism
 - oxidative phosphorylation
 - nicotinate and nicotinamide metabolism

Daratumumab influences transcription of enzymes involved in CD38 mediated regulation of metabolic pathways and chromatin modification *in vivo*

- analysis of engrafted human T cells
- changed transcription levels
 - ryanodine receptor 1 (RYR1)
 - poly (ADP-ribose) polymerase (PARP)
 - enhancer of zeste homolog 2 (EZH2)

Flow cytometry analysis of T cell functional subsets

- Evaluation of
 - IL17A
 - IFNy

Reduced proportion of Th1 and Tc1 cells

- Granzyme A
- Granzyme B

Parameter*	Method	Control (n=8)		Dara (n=8)		p-value
		Median	SD	Median	SD	
Sacrifice at day14, spleen						
Functional subsets among CD4 ⁺ T cells (%)	FACS*					
IFNγ ⁺ IL17A ⁻ T cells (Th1)		76.31	3.52	60.15	1.56	< 0.0001
IFNγ IL17A ⁺ T cells (Th17)		0.4	0.16	1.9	0.63	< 0.0001
IFNγ ⁺ IL17A ⁺ T cells (Th1/17)		4.65	1.69	9.61	1.7	< 0.0001
Functional subsets among CD8 ⁺ T cells (%)	FACS					
IFNγ ⁺ IL17A ⁻ T cells (Tc1)		95.13	0.62	84.34	4.11	< 0.0001
IFNγ ⁻ IL17A ⁺ T cells (Tc17)		0.07	0.06	0.89	0.84	0.015
IFNγ ⁺ IL17A ⁺ T cells (Tc1/17)		1.84	0.66	4.41	1.33	0.0002
Granzyme A ⁺ T cells		70.05	8.01	53.05	9.07	0.0011
Granzyme B ⁺ T cells		68.21	8.53	31.48	9.97	< 0.0001

Cytokine concentrations in serum at day 14

- Evaluation of
 - IFNy
 - IL6
 - IL10
 - IL17A

Increased IL17 levels in Dara-treated mice

\rightarrow Dara may induce Th17 subset differentiation

Parameter*	Method	Control (n=8)		Dara (n=8)		p-value
		Median	SD	Median	SD	
Serum cytokine at day14 (pg/ml)	CBA*					
IFNγ		509.21	248.4	132.25	73.41	0.000
IL6		2.47	0.83	1.15	0.49	0.0002
IL10		24.06	23.44	1.92	2.36	0.0054
IL17A		1.32	1.39	4.23	2.77	0.0054

Dara treatment inhibited mRNA expression CD4+ and CD8+ chemokine and receptor genes as well as cytotoxicity-linked genes

Parameter*	Method	Control (n=8)		Dara (n=8)		p-value
		Median	SD	Median	SD	
Sacrifice at day14, spleen						
Gene expression levels of T cells	RT-qPCR					
Pro-inflammatory cytokine gene expression among CD4 ⁺ -T cells	RT-qPCR					
IFNG		0.83	0.16	0.47	0.18	0.0275
IL17A		0.72	0.48	8.93	6.03	0.0348
TBX21/T-bet		0.95	0.08	0.77	0.08	0.021
Cytotoxic effector molecule gene expression among CD8 ⁺ -T cells	RT-qPCR					
IFNG		1.32	0.28	0.89	0.2	0.04
IL17A		0.76	0.49	2.71	0.88	0.0081
GZMA/Granzyme A		1.06	0.15	0.63	0.16	0.0069
GZMB/Granzyme B		1.15	0.26	0.55	0.28	0.0208
GNLY/Granulysin		1.17	0.2	0.23	0.11	0.0002
PRF1/perforin		1.06	0.06	0.6	0.3	0.0218
CD4 ⁺ -T cell related chemokine and chemoattractant receptor gene expression	RT-qPCR					
CCL2		0.86	0.18	0.45	0.2	0.0229
CCL3		1.05	0.27	0.5	0.21	0.0176
CCL5		0.96	0.13	0.44	0.15	0.0022
CCR1		1.11	0.33	0.62	0.18	0.0387
CCR2		0.73	0.27	0.25	0.08	0.014
CCR5		0.92	0.13	0.58	0.25	0.0498
CD8 ⁺ -T cell related chemokine and chemoattractant receptor gene expression	RT-qPCR					
CCL3		0.95	0.15	0.49	0.2	0.0098
CCL4		1.08	0.15	0.43	0.09	0.0003
CCR1		1.42	0.32	0.76	0.3	0.0239
CCR2		0.83	0.25	0.41	0.2	0.0413

Daratumumab preserves Graft-versus-leukemia effect (1)

- Human leukemia cell line Nalm6
 expressing luciferase
- NSG mice transplanted with 1 x 10⁵ Nalm6.LucGFP cells
- With or without hPBMCs and Daratumumab
- Elimination of leukemia cells evaluated with *in vivo* bioluminescent imaging system

Treatment with hPBMCs significantly reduced leukemia Mice treated with Daratumumab showed superior survival rates

Daratumumab preserves Graft-versus-leukemia effect (2)

No significant weight loss in mice receiving hPBMCs and Dara

Dara reduced GVHD severity

Frequencies of Th17 T cells were significantly higher in engrafted human T cells under Dara treatment

Conclusion

xeno-GVHD model supports further clinical use of Daratumumab for GVHD

- Dara inhibits proliferation, activation and differentiation of CD8+T cells
- Dara reduces expression of cytotoxic effector molecules, proinflammatory cytokines, chemokines and chemoattractant receptors
- Dara treatment may induce an increase in CD38 negative regulatory T cells
- inhibition of CD38 led to metabolic reprogramming of T cells with superior tumor control

Daratumumab might be a promising option for separating GVHD from GVL effects in patients with hematopoietic malignancies receiving allo-HCT

Thank you for your attention!

