

Cardiac and Thoracic Diagnosis & Regeneration

OPEN O ACCESS Freely available online

PLOS ONE

β-Cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells

Anna Milanesi^{1,2}, Jang-Won Lee³, Zhenhua Li³, Stefano Da Sacco⁴, Valentina Villani⁴, Vanessa Cervantes³, Laura Perin⁴, John S. Yu³*

1 Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 2 VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America, 3 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 4 Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America

Journal Club WS 2012/13 Stefanie Nickl

Background

Mesenchymal Stem Cells

- First isolation from bone marrow 30 ys ago
- Isolation from: spleen, heart, skeletal muscle, synovium, amniotic fluid, dental pulp, bone, umbilical cord, adipose tissue
- Expansion in culture while maintainig multipotency
- (Trans-)differentiation into different cell types: osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes, hepatocytes, epithelial cells, endothelial cells, neurons
- Heterogeneity
 - International Society for Cellular Therapy:
 - Plastic-adherent in standard culture conditions
 - Expression of CD105, CD73, CD90
 - Lack of CD45, CD34, CD14, CD11b, CD79a, CD19, HLA-DR
 - Must be able to differentiate into osteoblasts, adipocytes and chondrobalsts in vitro

DeMiguel MP et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 2012; 12:574-591.

Cardiac and Thoracic Diagnosis & Regeneration

Background

- BMSCs injected into diabetic animals reversed diabetic phenotypes and improved glucose control
- Poor direct
 ß-cell differentiation -> other possible roles of BMSCs in pancreatic islet regeneration
- Introduction of transcription factor genes into cultured human BMSCs
 - Activation of genes related to the development and function of ß-cells
- PDX1:
 - Master gene in pancreas development
 - Crucial for early pancreas differentiation
- VEGF-A:
 - Important for intra-islet angiogenesis
 - Vascular membrane is a niche for insulin gene expression and ß-cell proliferation
- 3 treatment groups:
 - hBMSCs
 - hBMSCs expressing PDX1
 - hBMSCs expressing VEGF

Christian

Methods 1

- Human BMSC Culture and expansion
 - hBMSCs from a single donor, passage #7
- Adenovirus production and cell transfection
 - cDNAs for human PDX1 and mouse VEGF165 were subcloned into AdenoX viral **DNA** vector
 - hBMSCs were transfected with adenovirus 2 days before transplantation
- Animal model and stem cell transplantation
 - NOD/SCID mice
 - 3 i.p. injections of streptozotocin
 - hBMSCs / hBMSCs-VEGF / hBMSCs-PDX1
 - Injection of 1x10⁶ cells (on day 7) intracardially
- Blood glucose and serum insulin measurements
 - non-fasting mice daily for 1 week, then twice a week
 - Mouse insulin ÉLISA, human insulin ELISA

Methods 2

- Immunohistochemical analyses
 - Mouse pancreatic tissues harvested 6 weeks after stem cell injection
- ß-cell count
- Phase contrast and confocal microscopy analyses
- rtPCR arrays
 - Pancreatic tissue

for Cardiac and Thoracic Diagnosis & Regeneration

Results 1.1 hBMSCs-VEGF

- Mice treated with STZ developed hyperglycemia 6-7 days after STZ- injection
- High mortality rate of diabetic mice
- Reversion of hyperglycemia due to hBMSC-VEGF injection

Results 1.2 hBMSCs-VEGF

Histological examination of the pancreatic islet morphology (6w after TX)

- Reduction of the number of insulin-expressing cells in STZ-induced diabetic mice

- Similar staining pattern in control mice and hBMSC-VEGF treated mice

for Cardiac and Thoracic Diagnosis & Regeneration

Results 1.3 hBMSCs-VEGF

hβ2-microglobulin

Animal/Cells	Pancreas	Kidney	Liver
1/hBMSC-VEGF	0.2±0.05	ND	NA
2/hBMSC-VEGF	0.18±0.07	ND	NA
3/hBMSC-VEGF	0.025 ± 0.005	0.004±0.001	ND
4/hBMSC-VEGF	0.03 ± 0.007	0.015±0.007	ND
1/hBMSC	0.008 ± 0.0005	ND	NA
2/hBMSC	0.0048 ± 0.001	ND	NA
3/hBMSC	ND	ND	ND
4/hBMSC	ND	ND	NA
1–3/no cells	ND	ND	NA

Engraftment and survival of hBMSCs-VEGF in the mouse pancreas (6w after TX)

for Cardiac and Thoracic Diagnosis & Regeneration

Results 1.4 hBMSCs-VEGF

hβ2-microglobulin Merge D Insulin α-SM actin

hBMSCs-VEGF were able to differentiate into vessels and ß-cells

Christian Doppler

Cardiac and Thoracic

Laboratory

Diagnosis & Regeneration

Results 1.5 hBMSCs-VEGF

- Reduction of VEGF expression in the ß-cells after induction of diabetes
- Restoration of VEGF expression after treatment with hBMSCs-VEGF

Cardiac and Thoracic Diagnosis & Regeneration

Blood glucose (mg/dl) 700 600 500 400 Rev Unrescued 300 Control STZ 200 ₹ 100 0 2 3 5 6 wk -1 0 1 4

- 50% of hBMSCs-PDX1 treated mice maintained severe hyperglycemia
- 50% showed reduction of hyperglycemia but again developed hyperglycemia after 2-3 weeks

Christian

Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

Results 2.2 hBMSCs-PDF1

DAPI hß2-microglobulin Insulin

Left:

 "Temporary reversed" (F) and "unrescued" (G) mice showed reduction of insulin expression in the pancreatic islets

Right:

- Engraftment of human cells in mouse pancreas

Cardiac and Thoracic Diagnosis & Regeneration

Results 3 hBMSCs

- hBMSCs without genetic modification did not ameliorate diabetic phenotypes
- survival rate similar to STZ-induced diabetic mice
- alteration of pancreatic islet morphology, inversion in the insulin/glucagon ratio, poor engraftment of hBMSCs in the pancreas

for Cardiac and Thoracic Diagnosis & Regeneration

Results 4.1

Endogenous vs. Transplantderived ß-cell differentiation

A: Only mice treated successfully with hBMSCs-VEGF showed significantly higher levels of mouse insulin compared with other groups

- B: levels of human insulin were detectable in the therapy-groups
 - \rightarrow de novo differentiation of hBMSCs into ß-cells

for Cardiac and Thoracic Diagnosis & Regeneration

Results 4.2

Endogenous vs. Transplantderived ß-cell differentiation

C: Levels of total serum insulin were higher in the therapy-groups

D: Number of ß-cells higher in therapy-groups (correlation with total insulin levels)

for Cardiac and Thoracic Diagnosis & Regeneration

Results 5.1

Mechanisms of endogenous ß-cell recovery in hBMSCs-VEGF treated mice

Decreasing expression of genes related with insulin receptor signaling pathway in pancreases of diabetic mice

UNIVERS WIEN

Up-regulation of genes involved in the insulin/IGF signaling pathway in pancreases of hBMSCs-VEGF treated mice SB.

Christian Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

Results 5.2

AKT and downstream proteins required for ß-cell proliferation, differentiation and survival are highly expressed in hBMSCs-VEGF mice

for Cardiac and Thoracic Diagnosis & Regeneration

Results 5.3

MEDIZINISCHE

UNIVERSITÄT WIEN

Mechanisms of endogenous ß-cell recovery in hBMSCs-VEGF treated mice

 P27kip1 (cell cycle inhibitor protein negatively regulated through PI-3K/AKT) was upregulated in diabetic mice and downregulated in hBMSCs-VEGF mice
 c-CASP3 was highly increased in diabetic mice

Cardiac and Thoracic Diagnosis & Regeneration

Discussion

- hBMSCs alone were not able to reverse hyperglycemia
- Recovery from diabetes following hBMSCs-VEGF injection
 - Engraftment of hBMSCs-VEGF in the pancreas of diabetic mice
 - Differentiation of hBMSCs-VEGF into blood vessels and ß-cells
 - Detectable levels of human insulin \rightarrow chimerism
 - − Higher levels of mouse insulin \rightarrow endogenous ß-cell regeneration
- Only transient recovery from diabetes following hBMSCs-PDX1 injection
- Upregulatin of insulin receptor associated genes in hBMSCs-VEGF mice
- Upregulation of genes involved in the PI-3K/AKT pathway
 - Inhibition of apoptosis
 - ß-cell differentiation and proliferation through activation of PDX1 and inhibition of P27Kip1
 - − Modulation of intra-islet angiogenesis \rightarrow VEGF expression

for Cardiac and Thoracic Diagnosis & Regeneration

