

Long-Term Benefit of Postconditioning

<u>Hélène Thibault</u>, Christophe Piot, Patrick Staat, Laurence Bontemps, Catherine Sportouch, Gilles Rioufol, Thien Tri Cung, Eric Bonnefoy, Denis Angoulvant, Jean-François Aupetit, Gérard Finet, Xavier André-Fouët, Jean Christophe Macia, Franck Raczka, Rolland Rossi, Rolland Itti, Gilbert Kirkorian, Geneviève Derumeaux and Michel Ovize

Circulation. 2008;117:1037-1044

Vienna 2013

The concept of lethal reperfusion injury.

Ovize et al. Cardiovascular Research Dis 2010

Ischemic Preconditioning

... is a process by which a brief ischemic insult confers protection against **subsequent** ischemic episode of similar or greater magnitude

e.g. 4 transient (5 minutes) periods of coronary artery occlusion alternately with 5 minutes of reperfusion

Pagelet al. Anesthesia Service 2011

Ischemic Postconditioning

... is a process by which a brief ischemic insult confers protection against **previous** ischemic episodes of similar or greater magnitude

e.g. 4 transient (5 minutes) periods of coronary artery occlusion alternately with 5 minutes of reperfusion

Bopass et al. Am J Cardiovasc Dis 2012

Christian

Laboratory

Doppler

Ischemia

Treatment

MEDIZINISCHE UNIVERSITAT WIEN

Trands in Cardiovascular Medicin 2012 Lemaire et al..

Vienna 2013

Pharmacologic postconditioning

Administration immediately before or during early reperfusion mimicked the beneficial action of IPC

- · Adenosin
- Bradykinin
- · Opioids
- Insulin
- . Growth Factors
- . Statins
- . Volatile anesthetics

Pagelet al. Anesthesia Service 2008

Lemaire et al.. Trands in Cardiovascular Medicin 2012

Ischemic PostC

first discribed in the 1980s by *Buckberg* and associates

myocardial reperfusion conditions reduce the extent of injury resulting from restoration of coronary blood flow

Buckberg et al. J Thorac Cardivasc Surg 1986

Ischemic PostC

Zhao et al. 2003

proposed that a series of short (30 sec)
episodes of coronary artery occlusion
intersepersed with 30-sec periods of
reperfusion before final resoration of coronary
artery blood flow possessed protective effects

Zhao et al. Am J Physiol Heart Circ Physiol 2003

performed during the first 8 minutes of reperfusion. In the postconditioned group, within 1 minute of reflow after the direct stenting, the angioplasty balloon was reinflated 4 times for 1 minute, with low-pressure (4 to 6 atm) inflations, each separated by 1 minute of reflow.¹⁶ After minute 8 of reperfusion, the PCI procedure was completed according to the physician's judgment with respect to

Table 1. Baseline Characteristics

	Control Group (n=21)	Postconditioned Group (n=17)	Р
Age, y	56±13	56±12	0.97
Male sex, %	78	76	0.64
Body mass index, kg/m ²	26±5	27±4	0.47
Hypertension, %	35	29	0.54
Smokers, %	65	65	0.63
Dyslipidemia, %	49	52	0.37
Diabetes, %	10	12	0.61
History of coronary artery disease, %	9	0	0.30
Admission blood glucose levels, $\mu {\rm mol/L}$	8.4±2.3	8.8±2.8	0.65
Admission hemodynamics			
Heart rate, bpm	73±13	72±12	0.67
Systolic blood pressure, mm Hg	133±23	136±20	0.62
Diastolic blood pressure, mm Hg	84±13	83±12	0.87
Admission ST-segment elevation			
Contiguous leads with >1-mm ST shift, n	4.0±1.8	3.9±0.8	0.80
Maximum ST shift, mm	4.2±2.3	4.2±2.0	1.00

Thibault et al. Circulation. 2008

Data are presented as percentage or as mean±SD. Patients' characteristics and treatment at hospital admission and discharge are presented.

LV and coronary angiography			
Single-/multiple-vessel coronary artery disease, %	86/14	82/18	0.56
Culprit artery (left anterior descending), %	52	56	0.47
LV ejection fraction, %	46±5	44±8	0.51
Abnormally contracting segments, %	39±14	40±8	0.60
Ischemia time, min	297±104	283±82	0.35
Stenting of culprit lesion	100	100	1.00
Treatment before angioplasty, %			
Intravenous nitrates	48	50	0.57
Morphine	48	56	0.43
Treatment at time of angioplasty, %			
Heparin	91	100	0.30
Antiaggregants	100	100	1.00
Treatment at discharge, %			
β -Blockers	83	94	0.56
Angiotensin-converting enzyme inhibitors	88	89	0.60
Statins	94	89	0.42
Antiaggregants	100	100	1.00
Long-acting nitrates	12	11	0.65
Diuretics	33	6	0.07

Results

Table 2. Infarct Size and LV Function

	Control Group (n=21)	Postconditioned Group (n=17)	Р
Cardiac enzyme infarct size (at days 1 to 3)			
CK release (AUC $\times 10^4$)	37.9±19.5	22.7±9.3*	0.01
Tnl release (AUC $ imes 10^4$)	24.6±20.6	13.0±7.0*	0.02
SPECT infarct size (at 6 months)			
Perfusion defect index (%)	19.5±13.3	11.8±10.3*	0.04
LV function by echocardiography (at 12 months)			
LV ejection fraction, %	49±13	56±8*	0.04
Wall motion score index	1.6±0.4	1.4±0.4*	0.04
Strain rate, s ⁻¹	0.6±0.4	1.2±0.8*	0.0002

Data are presented as mean \pm SD. AUC indicates area under the curve. Infarct size was assessed early (cardiac enzyme release) and at 6 months by SPECT imaging. LV function was evaluated at 12 months by echocardiography. *P<0.05 vs control.

Christian Doppler Laboratory

Cardiac and Thoracic Diagnosis & Regeneration

Thibault et al. Circulation. 2008

http://www.auntminnie.com/index.aspx?sec=sup_n&sub= mol&pag=dis&ItemID=71235

Vienna 2013

Reduction of infarct size measured in SPECT as well as a reduction of surrogate prameters (TnI, CK)

Discussion

Improved functional recovery at 1 year after AMI (7% improvement in LV ejection fraction) Better clinical outcome?

Risk of repeated in,- and deflation of the balloon

Questions I think that still have to be answered:

Does this procedure improve patients outcome?

First principle: Do not harm!

Thank you for your attention

