

for Cardiac and Thoracic Diagnosis & Regeneration

Myelodysplastic Cells in Patients Reprogram Mesenchymal Stromal Cells to Establish a Transplantable Stem Cell Niche Disease Unit

Hind Medyouf,^{1,11,13,*} Maximilian Mossner,² Johann-Christoph Jann,² Florian Nolte,² Simon Raffel,³ Carl Herrmann,^{4,5} Amelie Lier,³ Christian Eisen,³ Verena Nowak,² Bettina Zens,^{1,3} Katja Müdder,^{1,3} Corinna Klein,^{1,3} Julia Obländer,² Stephanie Fey,² Jovita Vogler,² Alice Fabarius,² Eva Riedl,⁶ Henning Roehl,⁷ Alexander Kohlmann,⁸ Marita Staller,⁸ Claudia Haferlach,⁸ Nadine Müller,² Thilo John,⁹ Uwe Platzbecker,¹⁰ Georgia Metzgeroth,² Wolf-Karsten Hofmann,² Andreas Trumpp,^{1,3,11,12,*} and Daniel Nowak^{2,12}

¹Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany ²Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany

³Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German

⁴Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany

⁵Division of Theoretical Bioinformatics, DKFZ, 69120 Heidelberg, Germany

⁶Department of Pathology, University Hospital Mannheim, 68167 Mannheim, Germany

⁷Department of Orthopedics, University Hospital Mannheim, 68167 Mannheim, Germany

⁸Munich Leukemia Laboratory (MLL), 81377 Munich, Germany

⁹Department of Traumatology, DRK Hospital Westend, 14050 Berlin, Germany

¹⁰Technical University Dresden, University Hospital 'Carl Gustav Carus,' Medical Clinic and Policlinic I, 01307 Dresden, Germany

¹¹German Cancer Consortium, 69120 Heidelberg, Germany

¹²These authors contributed equally to this work and are co-senior authors

¹³Present address: Technical University Dresden, University Hospital 'Carl Gustav Carus,' Medical Clinic and Policlinic I, 01307 Dresden, Germany

*Correspondence: hind.medyouf@uniklinikum-dresden.de (H.M.), a.trumpp@dkfz-heidelberg.de or andreas.trumpp@hi-stem.de (A.T.)

http://dx.doi.org/10.1016/j.stem.2014.02.014 Medyouf et al. (2014), Cell Stem

Cell, 14, 824-837

Cardiac and Thoracic Diagnosis & Regeneration

Myelodysplastic syndromes (MDS)

Heterogeneous group of malignant clonal disorders of the myeloid lineage affecting mainly older individuals (median 68-75a)

Characteristics:

Ineffective hematopoiesis Presence of dysplastic cells in the BM Peripheral cytopenias

Clinical presentation: Anemia

Bleeding Infection

Classification according to risk-score system segregates patients according to prognosis (lower-risk, intermediate-risk, high-risk)

Several genetic lesions identified in patients with MDS

Genetic mouse models of MDS – no recapitulation of the disease heterogeneity

Cardiac and Thoracic Diagnosis & Regeneration

Myelodysplastic syndromes (MDS)

Heterogeneous group of malignant clonal disorders of the myeloid lineage affecting mainly older individuals (median 68-75a)

Characteristics:

Ineffective hematopoiesis Presence of dysplastic cells in the BM Peripheral cytopenias

Clinical presentation: Anemia

Bleeding Infection

Classification according to risk-score system segregates patients according to prognosis (lower-risk, intermediate-risk, high-risk)

Several genetic lesions identified in patients with MDS

Genetic mouse models of MDS – no recapitulation of the disease heterogeneity

for Cardiac and Thoracic Diagnosis & Regeneration

Xenograft models in immunodeficient mice

- inconsistent, transient and low level engraftment especially in low-risk patients
- Engraftment only with HSC from high risk patients that are closer to AML than MDS
- Distinguishing normal and MDS HSC is difficult no specific marker and not all MDS HSC have trackable cytogenetic lesions
- Recent studies showing that microenvironment alterations influence the development of myeloid neoplasms

Hypothesis - disease propagating cells in lower risk patients form a functional unit with their respective stromal niche cells

for Cardiac and Thoracic Diagnosis & Regeneration

Xenograft Model using NOD-*scid* IL2Rgamma^{null} mice

B

MDS

Enhanced engraftment of lower-risk MDS by cotransplantation of patient-derived MSCs

for Cardiac and Thoracic Diagnosis & Regeneration

Gene	Amplicons	Frequency [%]	
SF3B1	7	14.5	
SRSF2	4	12.4	
U2AF1	8	7.3	
ZRSR2	12	3.1	
DNMT3A	16	2.5	
EZH2	17	6.4	
IDH1/2	1/1	1.4/2.1	
TET2	27	20.7	
ASXL1	11	14.4	
TP53	7	7.5	
CBL	2	2.7	
KRAS/NRAS	2/2	0.9/6.3	
RUNX1	7	8.7	
ETV6	8	2.6	
NPM1	1	1.8	

Genes commonly mutated in MDS and analysed in this study

for Cardiac and Thoracic Diagnosis & Regeneration

Synergistic effect of MSC & growth factors on the expansion of HSPCs

Test the xenograft model in NSGS mice that constitutively express the human cytokines IL-3, GM-CSF and SCF

for Cardiac and Thoracic Diagnosis & Regeneration

NSGS mice further enhance the engraftment of dysplastic MDS cells

for Cardiac and Thoracic Diagnosis & Regeneration

Identification of disease propagating cells (DPC) in MDS

-lineage restricted (myeloid) progenitor cells ?

-genetic/epigenetic changes in stem cells preventing lymphoid lineage commitment ?

for Cardiac and Thoracic Diagnosis & Regeneration

Myeloid and erythroid cells are consistently derived from MDS cells

for Cardiac and Thoracic Diagnosis & Regeneration

в						
	MDS ID	Injected cells	Nb. Cells / mouse	Mice > 1% hCD45+	% hCD45+ in BM	Weeks post- transplant
	MDS25	CD34+CD38-	13,000	3/3	6;33;29.6	14
	del(5q)	CD34+CD38+	13,000	0/4	0	14
		CD34-	13,000	0/3	0	14
		CD34-	2,500,000	0/2	0; 0.036	14
	MDS28	CD34+CD38-	40,000	1/2	0.21 ; 35	16
	RCMD	CD34+CD38+	40,000	0/2	0	16
		CD34+CD38+	150,000	0/1	0.04	16
		CD34-CD38+	40,000	0/2	0	16
		CD34-CD38+	150,000	0/2	0	16
		CD34-CD38-	40,000	0/2	0	16
		CD34-CD38-	150,000	0/2	0	16

DPC in lower-risk MDS are restricted to the lin-CD34+CD38-subset and show variegated clonality

Cardiac and Thoracic Diagnosis & Regeneration

Comparison of MDS engraftment with MDS MSCs versus healthy MSCs

MDS MSC provide MDS CD34+ cells with significantly enhanced engraftment capacity Medyouf et al. (2014), Cell Stem Cell, 14, 824-837

Molecular features of MDS MSCs in comparison with healthy

NES=2.13 FDB=0

NES=1.7 FDR=0.02

NES=1.84 FDR=0.007

MDS MSC

Factors for survival and proliferation of HSPC ↑

Fibrosis-associated genes ↑

Ongoing stromal stimulation

Response to inflammatory environment

Healthy Medyouf et al. (2014), Cell Stem Cell. 14. 824-837

for Cardiac and Thoracic Diagnosis & Regeneration

MDS MSC have an altered pattern of gene expression concerned with intercellular cross talk that might support enhanced MDS hematopoietic cell engraftment

for Cardiac and Thoracic Diagnosis & Regeneration

Exposure of healthy MSCs to MDS BM leads to altered gene expression in MSCs

for Cardiac and Thoracic Diagnosis & Regeneration

Summary

- intricate interplay between mutant hematopoietic cells and their MSCs in MDS diseased ,hematopoietic niche unit'
- MDS hematopoietic cells instruct healthy MSCs to acquire MDS MSC-like features
- MDS MSCs produce cytokines and other factors further promoting development and expansion of diseased hematopoietic MDS stem cells and their progeny

for Cardiac and Thoracic Diagnosis & Regeneration

