

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis

Winter M. et al., The EMBO Journal (2013) 32, 3176-3191

Tanja Berger

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Histone modifications

Histone acetylation by histone acetyltransferases (HATs)

- \rightarrow Opening of local chromatin structures
- \rightarrow Transcriptinal activation

Histon deacetylation by histone deacetyltransferases (HDACs)

- \rightarrow Repression
- → HDAC1 and HDAC2: components of the Sin3, NuRD, CoREST and NODE co-repressor complexes
- ➔ Potential regulatory functions of HDAC1 and HDAC2 in epidermal development?

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology Skin

MEDIZINISCHE UNIVERSITÄT WIEN

- \rightarrow physical barrier against the environment
- \rightarrow differentiation of multipotent stem cells (SCs) into
 - Interfollicular epidermis (IFE) lineage
 - Sebaceous gland (SG) lineage
 - Hair follicle (HF) lineage

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

- → Anagen: hair growth
- → Catagen: hair regression
- → **Telogen**: resting phase

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Keratinocyte differentiation

Candi et al., 2005

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Keratinocyte differentiation

Candi et al., 2005

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Results

Epidermal development

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Single knock out of HDAC1 and HDAC2

Protein

→ Normal epidermal development in the absence of either HDAC1 or HDAC2

epidermal development

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Developmental abnormalities in $Hdac1^{\Delta/\Delta ep} Hdac2^{\Delta/+ep}$

Hdac1^{∆/+ep} $Hdac2^{\Delta/\Delta ep}$ P60

Hdac2^{∆/+ep}

- \rightarrow Progressive alopecia
- \rightarrow Smaller after birth
- \rightarrow Reduced body weight
- \rightarrow Scaly tail regions

P185 P110 P185

Ε

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Severe phenotype of $Hdac1^{\Delta/\Delta ep} Hdac2^{\Delta/+ep}$

Protein quantification

Fold change (%)

300

200

100

 $Hdac1^{\Delta/\Delta ep}$ $Hdac2^{\Delta/+ep}$

 \rightarrow Papilloma like lesions

F

HDAC1/Actin

MEDIZINISCHE UNIVERSITÄT WIEN

→ Single *Hdac1* allele can compensate for HDAC2 deficiency

but not the other way around

Mutant hair follicles: \rightarrow mostly shorter and disordered

- \rightarrow failed to enter the telogen phase in a synchronized manner
- \rightarrow became atrophied
- \rightarrow failed to enter the anagen phase

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology Disturbed hair follicle development *Hdac1*^{∆/∆ep} *Hdac2*^{∆/+ep}

 $Hdac1^{\Delta/\Delta ep} Hdac2^{\Delta/+ep} HF$

 \rightarrow Increased p53 expression and apoptosis (cleaved caspase-3)

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology Disturbed hair follicle development *Hdac1*^{Δ/Δep} *Hdac2*^{Δ/+ep}

TF GATA3: epidermal lineage determination and differentiation of the inner root sheath

MEDIZINISCHE

UNIVERSITÄT WIEN

Lhx2, S100A3, Hoxc13, Msx2 genes important for hair development

→ Reduced in $Hdac1^{\Delta/\Delta ep} Hdac2^{\Delta/+ep}$

back skin

Ankersmit Laboratory

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Hyperkeratosis in Hdac1 $^{\Delta/\Delta ep}$ Hdac2 $^{\Delta/+ep}$ mice

B Quantification of epidermal thickness

D

\rightarrow thickening of the epidermis

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Hyperkeratosis in Holdac $1^{\Delta/\Delta ep}$ Holdac $2^{\Delta/+ep}$ mice

MEDIZINISCHE UNIVERSITÄT WIEN

Quantification of proliferating cells

Epgn and Ada... genes crucial for epithelial morphogenesis and proliferation

→ Hyperpoliferation of the IFE in *Hdac1*^{Δ/Δep} *Hdac2*^{Δ/+ep} mice

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Enlarged sebaceous gland in *Hdac1*^{Δ/Δep} *Hdac2*^{Δ/+ep} mice

MEDIZINISCHE UNIVERSITAT WIEN

Klk6...serine protease predominatly expressed in SGs

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Changes in lineage determination *Hdac1*^{Δ/Δep} *Hdac2*^{Δ/+ep} epidermis

Downregulation of SC markers in the HF bulge (CD34, \rightarrow Keratin 15) and hair sheath (Lgr5 and Sox9)

MEDIZINISCHE UNIVERSITAT WIEN

BrdU-positive

Upregulation Lgr6 (SC marker for SG and IFE growth)

BrdU pulse-chase experiments cells in IFE Hair follicle 40 $Hdac1^{\Delta/\Delta ep}$ Hdac1^{f/f} Hdac2^{∆/+ep} 30 Hdac2^{f/+} IFE 8 20 Hdac1^{f/f}Hdac2^{f/+} BrdU and CD34 → Reduction of BrdU+/ CD34+ -positive cells API BrdU 60 10 in HF (%) Increase of BrdU+ cells in \rightarrow **BrdU-positive** Hdac1^{∆/∆ep} Hdac2^{∆/+ep} cells in SG the IFE API BrdU 20 DAPI BrdU CL (%) Hdac1^{f/f} Hdac2^{f/+} Hdac1^{Δ/Δep} Hdac2^{Δ/+ep}

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

c-Myc activation in Hdac1 $^{\Delta/\Delta ep}$ Hdac2 $^{\Delta/+ep}$ epidermis

c-Myc overexpressing mice:

Epidermal hyperprolifration along the SG and IFE lineages

at the expense of HF differentiation

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

changes in Hdac1 $^{\Delta/\Delta ep}$ Hdac2 $^{\Delta/+ep}$ epidermis

Gene expression

Sin3a^{$\Delta/\Delta ep$} displayed c-Myc upregulation similar to the phenotype of Hdac1^{$\Delta/\Delta ep$} Hdac2^{$\Delta/+ep$}

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Alteration in repressor complex function *Hdac1*^{Δ/Δep} *Hdac2*^{Δ/+ep}

- → HDAC1 and HDAC2: components of the Sin3, MTA2 and CoREST co-repressor complexes
- → Reduced deacetylase activities
- → Reduced protein levels of Sin3A and MTA2

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Repressor complex function in

Hdac1 $^{\Delta/+ep}$ *Hdac2* $^{\Delta/\Delta}ep$ mice

- → HDAC1 and HDAC2: components of the Sin3, MTA2 and CoREST co-repressor complexes
- → No changes in co-repressor associated deacetylase activities

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Results

Tumour development

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Α

K5-SOS

P11

Tumor development in K5-SOS Hdac $1^{\Delta/\Delta ep}$ mice

K5-SOS В С Hdac1^{f/f} Hdac1^{∆/∆ep} **Tumour onset** Tumour free mice (%) Tumour weight Relative tail tumour weight 150 - Hdac 1^{Δ/Δep} (n=78) K5-SOS Hdac1^{f/f} (n=80)
K5-SOS Hdac1^{Δ/Δep} (n=15) 100 3 2 50 *** 45-505 IN 4550⁵Not 0 -0 20 40 60 Days

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

н

Tumor development in K5-SOS Hdac $1^{\Delta/\Delta ep}$ mice

- → Reduced co-repressor associated deacetylase activity
- \rightarrow Incrased levels of c-Myc protein

c-Myc Lamin B Skp2 Actin 45-505 biset 45.00. Hoact

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

K5-SOS Hdac2^{Δ/Δep} mice

MEDIZINISCHE UNIVERSITÄT WIEN

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

K5-SOS Hdac2^{∆/∆ep} mice

MEDIZINISCHE UNIVERSITAT WIEN

K5505 Juse

→ No effects on HDAC activity and c-Myc expression

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Discussion

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Divergent roles of

HDAC1 and HDAC2

- Single *Hdac1* allele sufficient to maintain proper epidermal development
- But a single *Hdac2* allele displayed a severe developmental phenotype in the epidermis (<u>hyperkeratosis</u>, <u>hair loss</u> and <u>sebaceous gland enlargement</u>)
- HDAC1 play a role in embryonic development (Lagger *et al.*, 2002), in B cells (Reichert *et al.*, 2012) and T cells (Grausenburger *et al.*, 2010; Dovey *et al.*, 2013; Heideman *et al.*, 2013)
- Contrary, single *Hdac2* allele sufficient for normal oocyte (Ma et al, 2012) and brain development (Hagelkruys, Lagger et al, manuscript inrevision)

→HDAC1 and HDAC2 specific functions in differentiation and development

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

HDAC1 acts as a tumour suppressor in the epidermis

- Under mechanical or oncogenic stress conditions HDAC2 <u>cannot fully</u> <u>compensate</u> for the loss of HDAC1 in the epidermis
- Sin3A and HDAC1 as <u>negative regulators</u> of the proto-oncogene c-Myc
- Lck-Cre Hdac1^{$\Delta/\Delta ep$} Hdac2^{$\Delta/+$} resulted in <u>neoplastic transformation of immature</u> <u>T cells</u> (Dovey *et al.*, 2013)

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

