

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves

<u>Cattin AL et al.</u> Cell. 2015 Aug 27;162(5):1127-39

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Overview

- Regeneration in peripheral nervous system (PNS)
- Blood vessels
- Macrophages
- Schwann cells (SC)

"The bridge"

- SCs \rightarrow guiding axons (proximal \rightarrow distal)
 - "Organized" migration via EphrinB/EphB2 signaling
- but: How do SCs find their way across the bridge?
 - Macrophages sensitize Hypoxia --> VEGF-A secretion & polarizing vasculature
 - SCs use newly formed vasculature as tracks

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Cell composition of bridge

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Cell composition of bridge

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Cell composition of bridge

Ε

Ankersmit Laboratory

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Cell composition of bridge

9

- After day 2 → significant vascularization (ECs)
- ECs cross bridge prior to SCs

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

в

Mouse cut bridge Day

christian.lang@meduniwien.a Rat cut Day 3

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Hoechst RECA-1 **O**

Rat cut bridge Day 3

Mouse cut bridge Day 5

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Blood vessels prior to SC migration

Do blood vessels provide directional signals to SCs?

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Rat cut bridge Day 4

Elastin Christian.lang@meduniwien.ac.at

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Rat cut bridge

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Mouse cut Day 5

Transgenic mouse with GFP in SC

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

G

Mouse cut Day 5

TEM...transmission electron microscopy

CLEM...correlative light and electron microscopy

christian.lang@meduniwien.ac.at

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Interaction - SCs and blood vessels

(rat and mouse)

migrating and guiding axons (throughout the bridge)

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

interaction in vitro:
 SCs and blood vessels?

GFP+ rat SC and human umbilical vein endothelial cells (**HUVEC**) in fibrin matrix

- SCs unable to migrate unless associated with EC tubules
 - vs. fibroblasts

В

SC

С Ш

Merge

Ankersmit Laboratory

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

3D-reconstruction

Nature of interaction

Cross-section of a tubule

CLEM SBF SEM

24

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Mode of migrating

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

GFP Phase contrast

D

protrusion extension

rear contraction

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

actomyosin contractility is required for migration

2D- laminin

3D- fibrin gel

christian.lang@meduniwien.ac.at

 Blood vessels provide ideal surface for actomyosin-driven, amoeboid-like SCs migration (3D)

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Summary of the first part

2. Interaction SC – blood vessels (in vivo) \rightarrow SC migration along endothelial cells (in vitro)

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Α

А

в

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

35

- Hypoxia sensitized by macrophages → VEGF-A secretion
- VEGF-A \rightarrow does is directly attract SCs?

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Transwell assay...specific test to study migratory response to angiogenetic inducers

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

MEDIZINISCHE UNIVERSITAT WIEN

38

- Macrophages sensitize hypoxia → VEGF-A secretion
- VEGF-A is required for ECs crossing
- If blood vessels already formed, VEGF-A is not required for SCs and axons

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Importance of macrophage-derived VEGF-A in vivo

Inactivation of VEGF in macrophages in two mouse models

1. Vegfa^{fl/fl} Lysm^{Cre} → macrophages and granulocytes

Vegfa^{fl/fl} Tie2-Cre → hematopoietic and endothelial cells

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

bridge , at day 5

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Mouse Uncut

Е

Α

Ankersmit Laboratory

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Prox p75 Hoechst CD31 Bridge Mouse cut Day 5

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Due to loss of VEGF-A expression in ECs?

\rightarrow Bone mark transplantation

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

D Vegfa^{fl/fl}→ wt Vegfa^{fl/fl}Tie2-Cre→wt p75 NF CD31 Bridge Bridge Distal Dista Ε % blood vessel density 4 ** 3. 2 Vegfa[#]→ wt Vegfa^{#/#}Tie2-Cre→wt

Christian Lang christian.lang@meduniwien.ac.at Day 5 after transection

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Injection at day 4

"rescue experiments"

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

ECs deleted for VEGF-A → regeneration possible

Macrophages secrete VEGF-A → EC → SC → regeneration

Α

Ankersmit Laboratory

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

SCs use vasculature for guiding axons

Control

VEGF-A misdirected

distal⁵¹

В

Day 6

proximal S100 Hoechst RECA-1 distal after inj.

iii

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

А в Schwann cells vs Axons 50 Relative angle EGF misdirec 0 -50 -100 VEGF PBS S100 Hoechst RECA-1 PBS VEGF

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

PBS D Control VEGF aberrant

Ε

Ankersmit Laboratory

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

VEGF distal misdirected

S100 Hoechst RECA-1NF

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

 VEGF-induced blood vessels → guide SCs & enable nerve regeneration

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Long term observation

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

Η

Christian Lang christian.lang@meduniwien.ac.at **

MEDIZINISCHE UNIVERSITÄT WIEN

Distal stump 3 months

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology

 "Long term" observation → defects in mutant model

- Vascularization necessary for amoeboid-like SCmigration and therefore axonal regrowth / PNSregeneration
- Applicability
 - The use of pre-existing structures after stroke / in cancer
 - − Mimicking polarization in nerve grafts → improved regeneration?

for Diagnosis & Regeneration in Thoracic Diseases & Applied Immunology Personal feedback

- Nice graphics / video footages
- Critics
 - Fig. 3C
 - "Long term"
 observation
- Applicability
 - Cancer
 - + Grafts

MEDIZINISCHE

UNIVERSIT