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Fig I: Schematic

illustration of wound

healing mechanisms
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Introduction

• Synthesize and remodel extracellular matrix (ECM)

• Heterogeneous population of cells

• Responsible for tissue and organ fibrosis, atherosclerosis, systemic

sclerosis, athermomatous plaques

• Role of fibroblasts in carcinoma progression & scar formation?

• Fibroblast lineages with fibrogenic potential

manipulating injury response

• Fibroblast markers: 

Pdgfra, Vim, P4hb, Col1a1, Col3a3, Fbn1
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Fibroblasts
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Neonatal human dermal fibroblasts
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Fibroblasts
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Sorrell, J. M. and A. I. Caplan 

(2009). "Fibroblasts-a diverse 

population at the center of it 

all." Int Rev Cell Mol Biol 276: 

161-214.

Fig II: the multiple 

functions of

fibroblasts
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Introduction

• Homeobox protein; important role in development of brain, limb, 

sternum

• Primary contributor to

• connective tissue secretion

• Organization during embryonic development

• Fibrosis

• Cancer stroma formation

 distinct fibroblasts represent unique cell types
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Engrailed-1 (en-1) (gene)
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EPFs = engrailed-1 positive fibroblasts
ENFs = engrailed-1 negative fibroblasts
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Introduction

• Proto-oncogene protein

• Regulation of cell fate and patterning during embryogenesis

• Wnt1
cre

-cells used for labelling early migratory neural crest

populations
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Wnt-1
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WPFs = wnt-1 positive fibroblasts
WNFs = wnt-1 negative fibroblasts
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Introduction

• Cell surface enzyme, expressed on surface of most cell

types

• Immune regulation, signal transduction and apoptosis

• cleaves X-proline dipeptides from the N-terminus of 

polypeptides

• Wide range of substrates:

• Growth factors, chemokines, neuropeptides, vasoactive

peptides

• Major role in glucose metabolism
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CD26=dipeptidyl peptidase-4
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Methods

• double-fluorescent Cre reporter mouse

• Membrane targeted tomato (mT) and

• Membrane-trageted green fluorescent (mG)

• Highlight membrane structures and cell morphology
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mTmG-Mice
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Fig. 1A: schematic illustration showing the
mTmG-system for tracing EPFs and WPFs via 
expression of GFP 

Tool for lineage tracing, transplantation studies and

cell morphology
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Multiple lineages of fibroblasts in the dorsal skin
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Fig. 1B: clusters of
gene expression of
EPFs (green), ENFs 
(red) and lysate
(blue)
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Multiple lineages of fibroblasts in the dorsal skin
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Fig 1B: EPFs and ENFs show

typical „fibroblast gene

expression“:

• Increased expression of Pdgfra, 

Vim, P4hb, Col1a1, Col3a3, 

Fbn1

• Decreased expression of CDH1, 

Epcam, Pecam
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Multiple lineages of fibroblasts in the dorsal skin
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Fig. 1D: qt-PCR analysis of

fibroblast and non-fibroblast-

associated gene expression

in dermal lysate (blue), EPFs 

(green) and ENFs (red):

„Non-fibroblast genes“ are

minimally or not expressed by

EPFs and ENFs.
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Multiple lineages of fibroblasts in the dorsal skin
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Fig 2A,B: EPFs and ENFs share a transcriptome-wide similarity

and fibroblast-gene expression
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Multiple lineages of fibroblasts in the dorsal skin
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Fig 2C: key differences in 

transcript expression (EPFs vs. 

ENFs: 

HOXC10, Slit2, Foxp1, leptin

receptor, Mylk, actin alpha1
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Multiple lineages of fibroblasts in the dorsal skin
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Fig 2D: dynamics of ENF- and EPF-

presence during development

Fig 2E: EPFs and ENFs display

similar morphology
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Multiple lineages of fibroblasts in the dorsal skin
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Fig 2F: EPFs and ENFs stained

positive for Col type I, Vimentin, 

Fibronectin and FSP-1
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Fibrogenic potential of dermal fibroblasts is lineage-restricted
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Fig 3B: GFP-labeled (EPF-derived) 

and RFP-labeled (ENF-derived) 

dermal ECM-deposition during

development
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Fibrogenic potential of dermal fibroblasts is lineage-restricted
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Fig 3D: 

• overlapping staining of

Collagen I and GFP 

(EFPs) confirms EFP-

derivation of observed

ECM

• K14 (keratinocytes) 

shows no overlapping

pattern

Only EPFs function as in vivo effectors of connetive tissue secretion and

formation.
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Fibrogenic potential of dermal fibroblasts is lineage-restricted
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Fig 3E: contribution of

EPFs and EPFs to scar

formation.

Fig 3G: the stroma of

a melanoma is

predominantly EPF-

derived

Fig 3F: majority of EPFs in 

healed skin 14 days after 

wounding

(FACS analysis)  
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Fibrogenic potential of dermal fibroblasts is lineage-restricted
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Fig S1K: EPFs 

contribute majorily to

skin fibrosis after 

irradiation

Data indicate: 

• EPFs are the primary lineage contributing to connective

tissue deposition during embryonic development, 

postnatal wound healing, cancer stroma formation and

radiation fibrosis of the skin
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Fibrogenic potential of dermal fibroblasts is cell-intrinsic
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Fig 4A,B: 

• Wnt-1-positive 

fibroblasts (WPFs) 

show significant

connective tissue

secretion in oral 

dermis (GFP-marked)

• Wnt-1 negative 

fibroblasts were also 

present in the oral 

dermis (RFP-marked)

Fig 4C: WPFs and WNFs 

showed similar

morphology and motility
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Fibrogenic potential of dermal fibroblasts is cell-intrinsic
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Fig 4D: oral scar tissue after 

wounding is GFP-positive and

hence WFP-derived

Fig 4E: significant

differences in oral vs. 

Dorsal skin scar: diminished

collagen content in oral 

wounds

Transcriptome analysis: differences betweens EPFs and WPFs mainly in 

global expression signatures (according to somitic vs. neural crest origins)
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Fibrogenic potential of dermal fibroblasts is cell-intrinsic

Vera Vorstandlechner

Are the site-specific differences (between EPFs and WPFs) cell-

intrinsic properties or an outcome of anatomic microenvironment?

Fig 4H: reciprocal

transplantation of WPFs 

(from the oral cavity) to

the dorsum:

• significantly reduced

scarring

• WPFs dispersed around

hair follicles, „beehive“ 

pattern of collagen

secretion

• mimicking oral scar
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DTR-based ablation of EPFs reduces cutaneous scarring
during wound healing
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DTR/EPF-GFP-expressing mice

• treated with DT

• difference in healing time scar size and –architecture?

Fig 5A-C: 

• Wound healing time in DTR-treated

in DTR-treated mice is significantly

elongated

• There is no significant difference in 

scar size

(DTR = diphteria toxin receptor, 

DT = diphteria toxin)



14.11.2016

Results

24

DTR-based ablation of EPFs reduces cutaneous scarring
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Fig 5D: greatly reduced

connective tissue

deposition in DTR-treated

mice (GFP-labeled)

Fig 5E: reduced collagen density in 

DTR-treated wounds
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DTR-based ablation of EPFs reduces cutaneous scarring
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Fig 5F: change in collagen

deposition does not influence

the tensile strength of healed

wounds

5H: change in ECM-deposition 

does not influence regeneration of

adipocytes or hair follicles
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DTR-based ablation of EPFs reduces melanoma growth

Fig 5I: tumor burden was significantly lower in 

mice treated with DT

Fig 5J: histological analysis

shows significant reduction

of EFP-derived tissue

deposition in DT-treated

melanoma (GFP-labeled)
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• FACS-isolation of fibroblasts

• 176 potential surface molecules

• Most surface molecules

similarily present in both EPFs 

and ENFs

• Most prominent in EPFs vs. 

ENFs: CD26 (94% in EPFs), WPFs 

similar

• Surface profiling and

prospective isolation of EPFs
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Surface profiling and prospective isolation of EPFs
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Surface profiling and prospective isolation of EPFs

Fig 6B: overlapping

immunopositivity of

CD26 and GFP (marking

EPFs) confirms FACS 

analysis

Fig 6C: fibrosis in-vivo assay

for ECM-deposition

RFP-labeled = ECM

Blue = CD26+ 
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Inhibition of CD26 reduces cutaneous scarring during wound healing
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Fig 6F-H: Diprotin-A (CD26-

inhibitor)-treated wounds show

slower wound healing but 

significantly reduced scar size
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Discussion

• Reciprocal transplantation shows that dermal architecture

and wound healing are independent of local

microenvironment

• Where do scar-forming dermal fibroblasts come from?

 Distinct local lineages of resident fibroblasts are

responsible for fibrosis

no ECM-contribution from other

mesenchymal/nonmesenchymal cells
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Fibroblast functional properties: Intrinsic or extrinsic?
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Discussion

• CD26/DPP4-inhibitors (Sitagliptin, Vildagliptin) already

approved by FDA for Diabetes II 

• effects on wound healing? 

• Oral systemic dose sufficient to affect wound healing and

fibrosis?

• systemic or topical effects?

32

Targeting the fibroplast culprit behind cutaneous scarring
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Conclusion

• Why En1/Wnt1in the first place? 

• No further work on the role of Engrailed-1 by the authors

• CD26 is also present in numerous other cell types

• Perhaps more clinical relevance for treating melanoma than

for scar prevention?

delayed wound healing
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Personal comments
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Conclusion

• Use of Diptrotin-A as CD26-inhibitor?

 Why not use Gliptins? 

• Slower wound healing in Gliptin-treated patients?

potential problem for diabetes patients?

No further literature available for clincal results of use of

gliptins in wound healing!

Marfella A et al. 2014: Dipeptidyl peptidase 4 inhibition may facilitate healing of 

chronic foot ulcers in patients with type 2 diabetes.

34

Personal comments
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Any questions?
Thank you!
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