

Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson's Disease

FABIO G. TEIXEIRA ,MIGUEL M.CARVALHO KRISHNA M. PANCHALINGAM ANA J.RODRIGUES BARBARA MENDES –PINHEIRO SANDRA ANJO BRUNO MANADAS LEO A.BEHIE NUNO SOUSA ANTONIO J. SALGADO

CONTENTS

• Parkinsons Disease

• Materials & Methods

• Results

Discussion

Outlook

Parkinsons Disease (PD)

- PD is a chronic, progressive, neurodegenerative disease
- Four cardinal motor manifestations Parkinsonism
 - Tremor at rest -rigidity
 - postural instability bradykinesia
- Freeze phenomenon \rightarrow "motor block", "start hesitation"

Cognitive and psychiatric impairments
 → dementia and depression

Dopamine Synthesis/Metabolism

http://amino-acid-therapy.com/wp-content/uploads/2012/08/neurotransmittermetabolism.png - last checked on 8th of October

Impact of the hMSC secretome in a Rat Model of Parkinsons DiseaseCopic Dragan9.10.2017

PD Pathophysiology

Basal Ganglia - Thalamus - Cortex

Loss of Dopaminergic Neurons SNc \rightarrow Basal Gangla dysfunction

Pathological Hallmark - aquisitition of LEWY- bodies

Dopamine depletion

alpha - synuclein accumulation

ROS, mitochondrial damage

https://www.medicinenet.com/lewy_body_dementia_dementia_with_lewy_bodies/article.htm - last checked 6th of Octobrer 2017

Impact of the hMSC secretome in a Rat Model of Parkinsons Disease Copic Dragan 9.10.2017

Basal Ganglia Network

- processing of information
 - \rightarrow execution of movement

 Caudate Nucleus, Putamen, Globus Pallidus (intenus/externus), Subthalamic Nucleus and Substantia Nigra (pars compacta/reticularis)

Neurotransmitters involved

- -Dopamine -Glutamate
 - -Acethylcholoin

-GABA -Enkepahalin

- Substance P

Neurological Axis – Basal Ganglia

NEUROSCIENCE, Fourth Edition, Figure 18.1

© 2008 Sinauer Associates, Inc.

https://kin450-neurophysiology.wikispaces.com/Parkinson%27s+Disease - last checked 6th of October 2017

Impact of the hMSC secretome in a Rat Model of Parkinsons DiseaseCopic Dragan9.10.2017

Two Pathways – Physiological Funtion

Direct Pathway

Indirect Pathway

- Striatum excitated by the Cortex

 → inhibits internal segment of the
 Globus Pallidus
- Disinhibition of the Thalamus allowing excitatory stimulation of the Cortex
 - \rightarrow facilitate Movement

- Striatum excitated by the cortex

 → inhibits external segment of the
 Globus Pallidus
- Disinhibitin of Subthalamic nucleus
 - \rightarrow excitatatory stimulation of GPi and SNr.
- Results in inhibition of the Thalamus
 → indirect inhibition of Cortices

8

Normal

Parkinsonism

Clin. Neurophysiol. 2008 Jul. 119(7):1459-1474

Causes for degeneration of Dopaminergic Neurons (DN)

• Oxidative Stress Hypothesis

1) degradative pathway by MAO resutIts in formation of H2O2

 \rightarrow reacts witch FE³⁺ to hydroxy radicals

2) nonenzymatical reaction with O_2 formig quinones and semiquinones and subsequently super radicals, hydroxy radicals

 6-Hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6tetrahydropyridin (MPTP)

- Is a result of pathway imbalace due to disruption of dopamaminergic neurotransmission
- Disruption is caused by loss of function in the SNc
 Striatum disinhibited → indirect Pathway

• Symptoms reflect the increase of movement inhibition and decrease of movement facilitation

Treatment

- Dopamin Substitution \rightarrow Levodopa (Dopa Decarboxylase!)
- Inhibitor of Dopamin Metabolism MAO-B inhibitors
- Dopamin Agonists (Apomorphine)

 Surgical Intervention Deep-Brain-Stimulation

Experimental Models in Parkinson Disease

Astrocytes Role in Parkinson: A Double-Edged Sword 517 http://dx.doi.org/10.5772/54305

Secretome as a novel source for treatment ?

- Several studies with PD animal models and Human Mesenchymal stem cells (hMSC)
 - \rightarrow promote neuroprotection

Secreted trophic factors such as neurothrophin.3, VEGF, GDNF and others

 Application of hMSC secretome into dentate gyrus in rat model → increase endogenous cell proliferation and cell density

Teixeira FG, Carvalho MM, Neves- Carvalho A et al. Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev 2015;11:288-

Materials and Methods

 dynamic culture of hMSCs in computer-controlled suspension bioreactors

DASGIP system Microcarries

- hMSCs derived from bone marrow were expanded in static culture before inoculation in the bioreactor system
- Cells were cultured for 72 hours
- Supernatant (Condotioned Medium, CM) was removed
- Microcarrier washing step, SN collection 24 hous later
- Harvested SN centrifugated for 10 mins at 300g

Stereotactical Surgery

- Ten week old Wister Han male rats n=36
- 12-hour light/dark cycles and fed with regular rodents' chow and tap water ad libitum
- handled for 1 week before beginning injections to reduce the stress induced by the surgical procedures
- Sham group vs 6-OHDA group
- placed on a stereotaxic frame and unilaterally injected (Hamilton syringe with a 30-gauge) either vehicle (sham group, n = 11) or 6-hydroxidopamine (6-OHDA; n = 25; directly into the medial forebrain bundle (MFB)

- Sham animals received 2 ml of 0.2 mg/ml ascorbic acid in 0.9% of NaCl
- 6-OHDA animals were injected with 2 ml of 6-OHDA hydrochloride (4 mg/ml) with 0.2 mg/ml ascorbic acid in 0.9% of NaCl at a rate of 1.0 ml/minute.

• After each injection, the needle was left in place for 4 minutes to avoid any backflow up the needle tract.

• Behavioral assesment 3 weeks after surgery

Five weeks after the injection of 6-OHDA \rightarrow hMSC secretome application. n=12

Vehicle/ Controle = Neurobasal A Medium + Kanamycin n=13

1, 4, and 7 weeks following surgery, behavioral assessment was performed

Behavioral Assesment

RotaRod

- motor coordination and balance, 3 days of training phase

On the 4th day the latency to fall was observed

- Skilled-Paw Reaching test (Staircase Test) forelimb use and skilled motor function
 2 days to familiarize the animals with the test
- Apomorphine Turning Behavior (rotameter test) subcutaneously injected, contralateral rotations

TH - Immunohistochemistry

- After 13 weeks the animals were killed with sodium pentobarbital
- Coronal sections of the Striatum and mesencephalon were obtained, four series were obtained
- One was processed as a free-floating tyrosine hydroxylase (TH) immunohistochemistry.
- total TH+ cells in the SNc area were counted in both hemispheres

RESULTS

- Phenotypic Characterication of 6-OHDA Lesions
- Transplantation of hMSC CM-Attenuated Motor Deficits of 6-OHDA-Injected Animals
- Transplantation of the hMSC Secretome Restored the Neuronal Structure

Phenotypic Characterication of 6-OHDA Lesions

Impact of the hMSC secretome in a Rat Model of Parkinsons Disease Copic Dragan 9.10.2017 injection of 6-OHDA in the MFB (A) led to an intense turning behavior in the apomorphine-induced turning behavior when compared with sham group

 6-OHDA-injected animals also exhibited significant impairment in motor coordination on the RotaRod test as well as in paw - reaching - test performance

Transplantation of hMSC CM-Attenuated Motor Deficits of 6-OHDA-Injected Animals

Staircase: forced-choice

Impact of the hMSC secretome in a Rat Model of Parkinsons DiseaseCopic Dragan9.10.2017

- hMSC CM-injected animals had a significant improvement in their motor coordination when compared with the 6-OHDA group
- Paw-reaching performance also demonstrated a significant improvement of the forelimb coordination of the hMSC CMinjected animals

Transplantation of the hMSC Secretome **Restored the Neuronal Structure**

- there was a significant loss of DA neurons after injection of 6-OHDA into the SNc
- There was a significantly higher number of TH- positive cells observed in the SNc (CM: 25.36% 6 5.45%) when compared with the 6-OHDA group
- The same tendency was also observed in the striatum by assessing TH-positive fibers by densitometry analysis.

hMSCs Secretome

kinase cascade; 2%

- characterized the secretome through targeted and nontargeted proteomic approach-based analyses
- Bioplex assay → hMSCs secreted important neurotrophic factors such as VEGF, BDNF, IL-6, and GDNF
- Through the combined MS analysis they found additional proteins with important actions

CNS regulators such as Cys C glia-derived nexin (GDN); galectin-1 and pigment epithelium-derived factor (PEDF)

• Only PEDF was found to be an important neurotrophic and neuroprotective molecule in the context of PD

Discussion

• Which factors of the Secretome exert the beneficial effect ?

- molecules such as VEGF, BDNF, IL-6, and GDNF were present in the hMSC secretome – promoting neuroprotection in dopamingeric neurons
- when applied in vitro, BDNF induced the differentiation and neurite outgrowth in DA neurons
- In vivo, in nonhuman primates, BDNF has demonstrated the ability to reduce DA neuronal loss

 stimulation by the hMSC secretome is not dependent on the presence of just one secreted factor but several

Reflection on the work process

• Well structured paper, adequate language. Great figures

• Effects on Microglia, Astrocytes ...?

• Insight into new methods

