<u>Beer et al. 2015</u> -Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration

Journal Club 13.11.2017

Semmler Lorenz

Introduction to regenerative medicine

- Regenerative medicine aims to restore damaged or dysfunctional tissue
- Major advances in drug therapies, surgical interventions and organ transplantation, <u>BUT:</u>
- Tremendous problems remain unsolved concerning regeneration of injured organs
- Previously, the use of stem cells has shown promising results, <u>however</u>
- It was recently acknowledged that paracrine factors are the key
- Boosted by apoptosis

Previous studies

- Stressed peripheral blood mononuclear cells (PBMCs) could promote tissue protection and repair through paracrine activities
- Their secretome has been shown to enhance angiogenesis and wound healing *in vitro* and *in vivo* (regeneration of myocardium and brain after acute ischemic injuries)
- Only a few previous studies have identified the paracrine factors involved (IL-8, IL-16, MMP-9, VEGF...)

This present study...

- Analyzed in detail the biological components present in conditioned medium (CM)
- Looked in depth at proteins, lipids and extracellular vesicles
 - <u>Proteins</u>: several secreted proteins have been identified to exert cytoprotective and regenerative capacities
 - <u>Lipids</u>: have been shown to modulate immune function, induce angiogenesis and enhancing wound healing by upregulating pro-angiogenic proteins
 - <u>Extracellular vesicles</u>: intercellular interaction, (mRNA, microRNA, protein, lipid delivery; *e.g. exosomes from mesenchymal stromal cells induced neurogenesis after stroke*)

"Canapé" Aim of the study

- <u>Aims</u>: Characterization of the secretome of (non-)irradiated PBMCs
 - Combination of methods, including transcriptomics, lipidomics, functional *in vitro* assays
- Evaluation of viral-cleared PBMC secretome
 - Retention of preventative potency in a porcine closed-chest-reperfusion, acute myocardial infarction (AMI) model
- <u>Results:</u>
 - Irradiation induced the expression of pro-angiogenic factors, the shedding of microparticles and exosomes and the production of oxidized phospholipids
 - Exosomes and proteins are the two major biologically active components present in the secretome of irradiation-induced PBMCs
 - *In vivo*: "cell free" regenerative medicine shows potency in preventing ventricular remodeling after an experimental AMI

Materials and methods

Experimental workflow

Beer, L. *et al.* Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells : Impact of Released Proteins and Exosomes for Tissue Regeneration. *Nat. Publ. Gr.* 1–18 (2015). doi:10.1038/srep16662

Isolation of PBMCs

http://os.bio-protocol.org/attached/image/20141121/20141121000327_5767.jpg Accessed 11.11.2017

Results

Changes in the PBMC transcriptome

- PBMCs: irratiated vs. non-irradiated, culture for 2h/4h/20h
- RNA isolation and microarray analysis (evaluation of gene expression)
- Non-irradiated cells:
 - 167 transcripts that encoded actively secreted proteins
 - Enrichment in genes involved in amino acid transport and endocrine regulation
- Irradiated cells:
 - 213 transcripts that encoded actively secreted proteins
 - Enrichment in genes involved in angiogenesis, wound healing and leukocyte trafficking regulation

Changes in the PBMC transcriptome

Data suggest that gene expression is **shifted from metabolic processes** in the non-irradiated state **towards tissue regeneration** after irradiation.

Comparison of secretomes

Beer, L. *et al.* Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration. *Nat. Publ. Gr.* 1–18 (2015). doi:10.1038/srep16662

- Significantly higher concentrations of neuropilin, thrombospondin, CXCL13 and angiogenin in irradiated PBMCs secretome
- Significantly higher concentrations of phospholipids, cholesterolsulfate, cholesterol and free fatty acids in irradiated PBMCs secretome

Ionizing radiation induces phospholipid oxidation Non-oxidized Oxidized prod

- Quantification of oxidized products in the conditioned medium (CM) of irratiated vs. non-irradiated PBMCs 20h after irradiation.
- <u>Irradiated</u> samples showed <u>significantly higher</u> <u>concentrations of oxidized</u> <u>lipid products</u> in the CM.

Beer, L. *et al.* Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration. *Nat. Publ. Gr.* 1-18 (2015). doi:10.1038/srep16662

Ionizing radiation induces release of microparticles

<u>Left</u> I Non-irradiated: largely intact plasma membrane and cell nucleus

<u>Right</u> I Irradiated: cellular shrinking, plasma membrane fragmentation, chromatin condensation

Apoptosis is known to induce shedding of plasma membrane microparticles.

Isolation of microparticles (MP) from CM at 20h after irradiation. Stain with annexin V (apoptosis marker).

Typical MP range: 0.2 - 1.0 µM

Irradiation induced the release of both small and large MPs.

 Beer, L. et al. Analysis of the

 Secretome of Apoptotic Peripheral

 Blood Mononuclear Cells : Impact

 of Released Proteins and

 Exosomes for Tissue

 Regeneration. Nat. Publ. Gr. 1-18

 (2015). doi:10.1038/srep16662

Ionizing radiation induces release of exosomes and modulates protein content

Transmission electron microscopy (TEM)

- Isolation of exosomes from CM of irradiated / non-irradiated PBMCs at 20h
- <u>3x more exosomes in</u>
 <u>CM of irradiated PBMCs</u>

Beer, L. et al. Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration. Nat. Publ. Gr. 1-18 (2015). doi:10.1038/srep16662

FACS (cell sorting) analysis

- Exosome markers: CD63, CD9
- <u>Different size of</u> <u>exosomes</u> (143 nm ± 56 nm nonirradiated / 177 nm ± 63 nm irradiated)
- <u>Higher total protein</u> <u>content</u> in exosomes in irradiated cells

SDS-PAGE / 2D gel electrophoresis

- Proteins: seperated on SDS-PAGE, stained with silver stain
- <u>Differentially expressed</u> <u>proteins in exosomes</u> of irratiated vs. nonirradiated PBMCs

Exosomes and proteins stimulate CXCL1 and CXCL8 expression

- CXCL1 and CXCL8 responses in fibroblasts are induced after stimulation with total CM.
- <u>CXCL1</u>: growth factor, signal for inflammation
- <u>CXCL8</u>: = IL-8, mediator in inflammation and angiogenesis
- <u>Expression of both is increased</u> when stimulated with exosomes or proteins from irradiated and non-irradiated PBMCs.
- Data from fibroblasts, similar results in keratinocytes

Beer, L. *et al.* Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration. *Nat. Publ. Gr.* 1–18 (2015). doi:10.1038/srep16662

Proteins and exosomes in conditioned media (CM) are biologically active

EDICAL UNIVERSITY

F VIENNA

- Scratch assay of fibroblast monolayers (similar results in keratinocytes)
- Untreated or treated with exosome preparations from non-irradiated or irradiated PBMCs.
- <u>Treatment with PMBC-derived</u> <u>exosomes accelerated wound</u> <u>closure.</u>
- No detectable difference between irradiated and nonirradiated PBMCs.
- Exosomes (and proteins) are the main biologically active component of the CM.

Beer, L. *et al.* Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration. *Nat. Publ. Gr.* 1–18 (2015). doi:10.1038/srep16662

Description of the viral-cleared, GMP-compliant supernatant used in the *in vivo* AMI

- Comparison in domestic pig closed-chest reperfusion acute myocardial infarction model
- Quantity and quality of biological components were comparible between GMP-compliant and experimentally prepared supernatants
- GMP-compliant CM enriched in oxidized phospholipids
- No microparticles (filtered through 0,2 µm filter)
- Comparable capacity to attenuate ischemic damage, improved cardaic output and reduced infarct areas
- First proof of principle

	Parameters	Medium Control (n=7)	CM $(1,5 \times 10^{9};$ n=4)	CM + PR (1,5 × 10 ⁹ ; n=6)	
After 3 days	Weight (kg)	31.9 ± 0.9	32.0±1.2	34.2 ± 0.5	n.s .
	Age (days)	90 ± 0	90±0	90 ± 0	n.s.
	LVEDV (ml)	67.6 ± 2.8	75.6 ± 2.2	$83.0\pm4.0^{\star}$	*
	LVESV(ml)	38.4 ± 2.5	47.4±1.7*	48.7 ± 4.3	n.s.
	LVSV (ml)	29.2 ± 1.3	28.3±2.2	$34.3\pm2.0^{\rm s}$	n.s.
	LVEF (%)	43.4 ± 1.9	37.3±2.2	41.7 ± 2.9	n.s .
	HR/min	111 ± 6	87±9*	77±3**	**
	CO (l/min)	3.2 ± 0.1	2.4±0.1*	$2.6\pm0.2^{\star}$	**
	CI (l/min/m2)	3.6 ± 0.1	3.1±0.3	3.3 ± 0.2	n.s.
	Infarct %	18.2 ± 1.7	13.1±2.8	$12.3 \pm 1.9^{*}$	n.s .
After 30 days	Weight (kg)	39.4 ± 0.5	$50.0 \pm 1.8^{***}$	55.7±0.7***	***
	Age (days)	120 ± 0	120 ± 0	120 ± 0	n.s .
	LVEDV (ml)	54.8 ± 4.1	$107.5 \pm 6.7^{***}$	$102.5 \pm 6.0^{***}$	***
	LVESV(ml)	32.9 ± 4.0	$65.5 \pm 3.4^{***}$	$53.9 \pm 4.3^{**}$	***
	LVSV (ml)	21.8 ± 1.8	$42.0 \pm 4.4^{**}$	$48.6 \pm 2.9^{***}$	***
	LVEF (%)	40.5 ± 3.6	38.9±2.3	47.6 ± 2.1	n.s .
	HR/min	114±7	123 ± 5	109 ± 3	n.s.
	CO (l/min)	2.4 ± 0.1	$5.1\pm0.4^{***}$	5.3±0.3 ***	***
	CI (l/min/m2)	2.5 ± 0.1	5.0±0.3***	4.7±0.3***	***
	Infarct %	12.6 ± 1.4	9.8±0.6	8.2 ± 1.7	n.s .

Beer, L. *et al.* Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration. *Nat. Publ. Gr.* 1–18 (2015). doi:10.1038/srep16662

Discussion, conclusion and summary

Identification of proteins in the secretome

- Bioinformatics-based analysis of the secretome
- Revealed 213 upregulated proteins in response to irradiation
- Involved biological processes related to angiogenesis, cell proliferation and cytokine signaling
- *Examples*: adrenomedullin, MMP9, VEGFA, TIMP-1
- growth differentiation factor 15, insulin like growth factor
- Purified CM proteins induced:
 - Cell migration
 - CXCL1 and CXCL8 expression (in FBs and KCs) → involved in wound healing and angiogenesis

Presence and activity of extracellular vesicles in PBMC-derived CM

- Importance of extracellular vesicles as mechanism of intercellular communication
- Stimulate regenerative capacity of injured tissues (increase endothelial cell proliferation, induce angiogenesis, modulate extracellular matrix interactions)
- Exact mechanism unclear
- Exosomes and proteins are the two main biological components that stimulate CXCL1 and CXCL8 gene expression

Effect of irradiation on the oxidized lipid content of the secretome

- Focus on the oxidized phosphatidylcholines (oxPCs)
- Irradiation promoted the formation of oxidized lipid species
- Pro-angiogenic and immunomodulatory properties
- CM obtained from irradiated PBMCs contained significantly higher concentrations of specific oxPCs
- oxPCs are known to induce expression of CXCL8, modulate angiogenesis
- No detectable effect in vitro

Outlook and questions for the future

Thank you for your attention!

