Pro-resolving Lipid Mediators and Their Role in Inflammation

Edzhem Chavush

Introduction

Overview of Inflammation

 A protective response that is essential for survival

Causes of inflammation

- Infections
- Physical or chemical injury
- Foreign bodies
- Immune reactions
- Ischemia
- Trauma

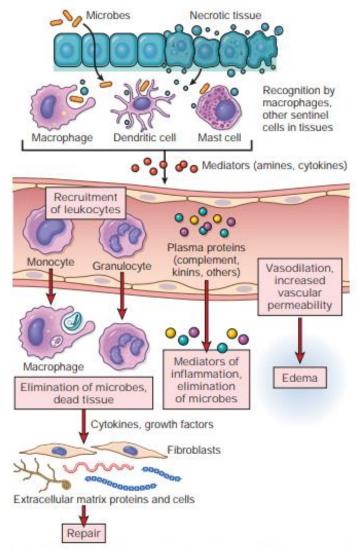
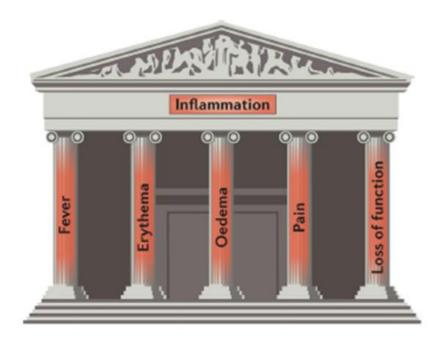
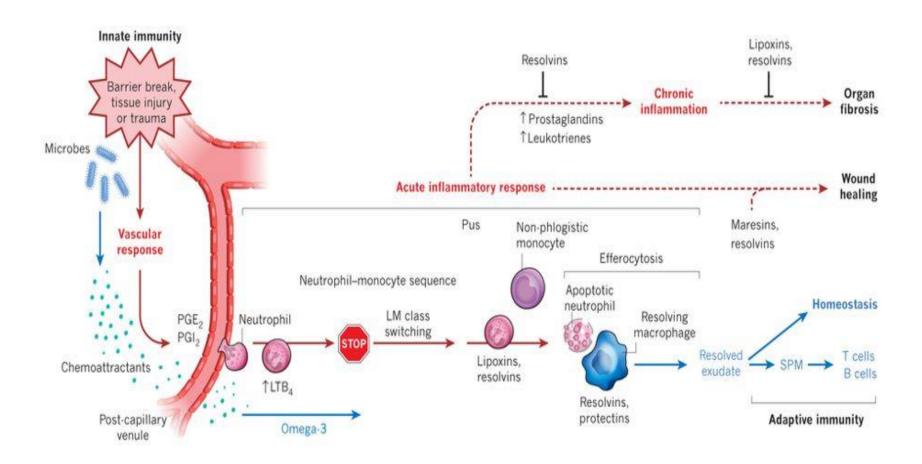


Figure 3-1 Sequence of events in an inflammatory reaction. Macrophages and other cells in tissues recognize microbes and damaged cells and liberate mediators, which trigger the vascular and cellular reactions of inflammation.

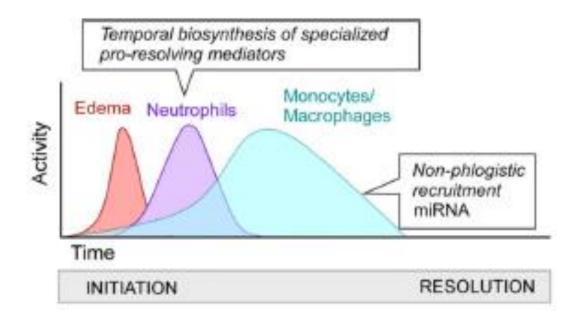

Robbins and Cotran, Pathologic Basis of Disease (2015)

Acute Inflammation

- Dilation of small vessels leading to an increase in blood flow.
- Increased permeability of the microvasculature enabling plasma proteins and leukocytes to leave the circulation.
- Emigration of the leukocytes from the microcirculation, their accumulation in the focus of injury, and their activation to eliminate the offending agent.


Cardinal Signs of Acute Inflammation

Basil et al. Nat Rev. Immunol. 2016


Acute Inflammation

The role of lipid mediators in acute inflammation and resolution (Serhan et al. 2014)

Acute Inflammation

Outcomes of Acute Inflammation

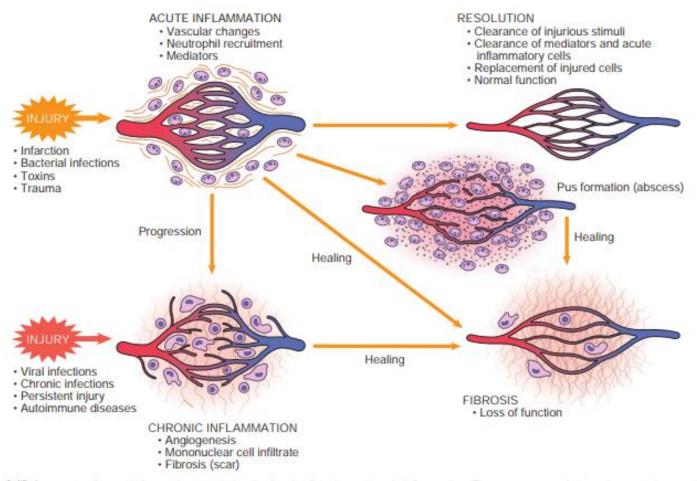
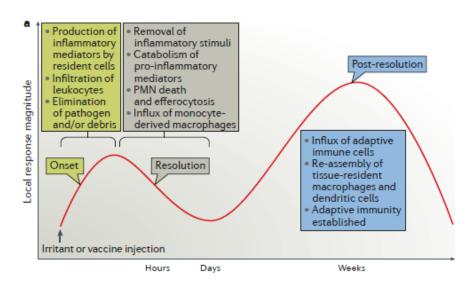
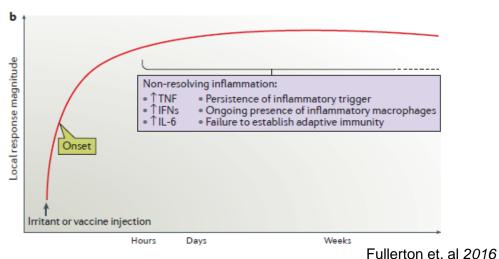


Figure 3-17 Outcomes of acute inflammation: resolution, healing by fibrosis, or chronic inflammation. The components of the various reactions and their functional outcomes are listed.


Chronic Inflammation

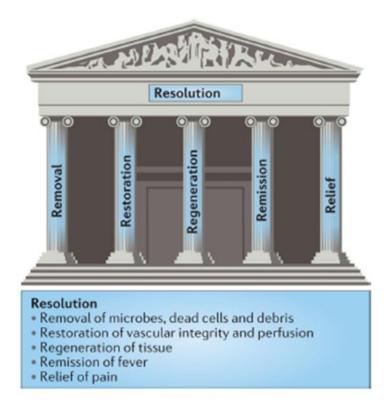

A response of prolonged duration (weeks or months) in which inflammation, tissue injury and attempts at repair coexist.

Characteristics:

- Infiltration with mononuclear cells, which include macrophages, lymphocytes, and plasma cells.
- Tissue destruction, induced by the persistent offending agent or by the inflammatory cells.
- Attempts at healing (angiogenesis and fibrosis).
- Mediated by cytokines produced by macrophages and lymphocytes (notably T lymphocytes).

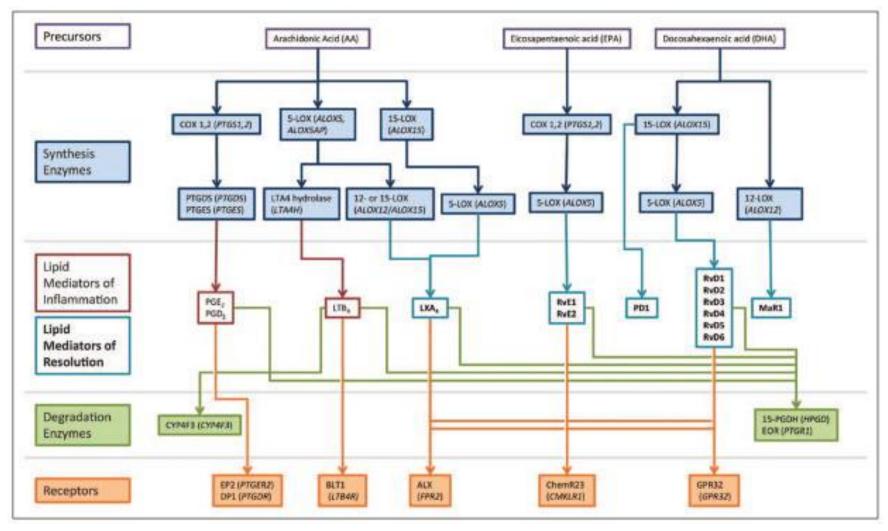
Acute vs. Chronic Inflammation

Acute vs. Chronic Inflammation

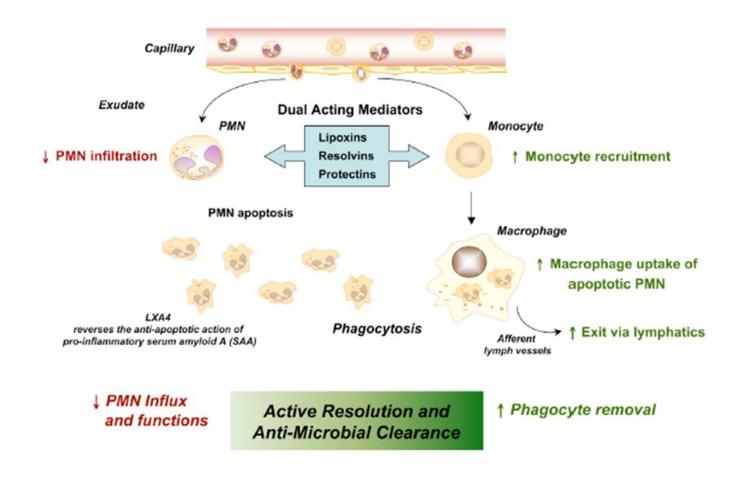

FEATURE	ACUTE INFLAMMATION	Persistent acute inflammation, foreign bodies (e.g., silicone, glass), autoimmune disease, certain types of infection (e.g., tuberculosis, leprosy)	
Pathogenesis	Microbial pathogens, trauma, burns		
Primary cells involved	Neutrophils	Monocytes/macrophages (key cells), B and T lymphocytes, plasma cells, fibroblasts	
Primary mediators	Histamine (key mediator), prostaglandins, leukotrienes	Cytokines (e.g., IL-1), growth factors	
Necrosis	Present	Less prominent	
Scartissue	Absent	Present Delayed Weeks, months, years	
Onset	Immediate		
Duration	Few days		
Outcome	Complete resolution, progression to chronic inflammation, abscess formation	Scar tissue formation, disability, amyloidosis (refer to Chapter 3)	
Main immunoglobulin	IgM	1gG	
Serum protein electrophoresis effect	Mild hypoalbuminemia	Polyclonal gammopathy; greater degree of hypoalbuminemia	
Peripheral blood leukocyte response	Neutrophilic leukocytosis	Monocytosis	

Goljan et al. 2009

Resolution


- "Clean up" phase after the initial inflammatory response.
- An active biochemical process that involves the interaction of many mediators.

Basil et al. Nat Rev. Immunol. 2016


Lipid mediators

Orr et al. 2016

Dual anti-inflammatory and pro-resolution actions of specific lipoxins, resolvins and protectins

Cell-type specific actions of pro-resolving lipid mediators

Mediator	Target cell	Action(s)	
Lipoxin A ₄	Neutrophil	Inhibits chemotaxis, trans-endothelial and trans-epithelial migration	
		Inhibits neutrophil-epithelial cell interactions	
		Inhibits superoxide anion generation and degranulation	
	Monocyte	Stimulates chemotaxis and adhesion	
		Inhibits peroxynitrite generation	
		Reduces IL-8 release by cells from individuals with asthma	
	Macrophage	Increases engulfment of apoptotic neutrophils	
	Eosinophil	Inhibits migration and chemotaxis	
		Inhibits generation of eotaxin and IL-5	
	NK cell	Inhibits NK cell cytotoxicity	
		Increases granulocyte apoptosis	
	ILC2	Inhibits IL-13 release	
	Dendritic cell	Inhibits IL-12 production	
	Epithelial cell	Increases proliferation after acid injury, blocks IL-6 and IL-8 release	
	Endothelial cell	Stimulates PKC-dependent prostacyclin formation	
		Blocks the generation of reactive oxygen species	
		Inhibits VEGF-induced endothelial-cell migration	
	Fibroblast	Inhibits IL-1β-induced IL-6, IL-8 and MMP3 production	
		Inhibits CTGF-induced proliferation	
	Smooth muscle	Inhibits LTC ₄ -initiated migration	

Cell-type specific actions of pro-resolving lipid mediators

Mediators	Cell type	Action(s)
Protectin D1	Neutrophil	Upregulates CCR5 expression ⁷³
	Macrophage	Stimulates nonphlogistic phagocytosis of apoptotic neutrophils 15
	T cell	Inhibits TNF and IFNy secretion, promotes apoptosis 71
		Upregulates CCR5 expression ⁷³
	Microglia	Inhibits IL-1β expression ¹¹
	Epithelia	Protects from oxidative-stress-induced apoptosis in retinal pigment epithelia 70
Resolvin E1	Neutrophil	Stops transepithelial and transendothelial migration 9
	Macrophage	Stimulates nonphlogistic phagocytosis of apoptotic neutrophils 15
	Dendritic cell	Blocks IL-12 production ⁵⁸
	T-cell	Upregulates CCR5 expression ⁷³
Resolvin D1	Microglia	Inhibits IL-1β expression ¹⁰
Aspirin-triggered resolvin D1	Neutrophil	Stops transmigration 10, 67

Pro-resolving Lipid Mediators in Disease

Graft versus host disease	Lipoxins	$\mathrm{LXA_4}$ and 15-epi-LXA ₄ administration improves clinical symptoms	
Alzheimer disease	Lipoxins	LXA ₄ decreases NF-κB expression and recruits microglia, promoting clearance of amyloid-β deposits and improving cognition in mouse models	
	Protectins	NPD1 promotes brain cell survival and an anti-apoptotic gene expression programme in human tissue	
	Resolvins	RvD1 stimulates macrophage phagocytosis of amyloid- β in vitro in PBMCs from patients with Alzheimer disease	
Amyotrophic lateral sclerosis	Resolvins	RvD1 inhibits IL-6 and TNF production in macrophages derived from post mortem samples	
Murine models of inflammatory bowel disease or colitis	Lipoxins	15-epi-LXA ₄ enhances phagocytic clearance of bacteria and limits the inflammatory cytokine milieu	
		LXA4, through NF-xB, downregulates pro-inflammatory cytokines and improves mortality	
	Resolvins	RvEl suppresses pro-inflammatory response of macrophages	
		RvEl blocks leukocyte inflammation and protects against colitis	
		RvD2 and AT-RvD1 decrease neutrophil infiltration and cytokine response, and improves clinical metrics	
Diabetes	Resolvins	RvD1 improves glucose tolerance and insulin sensitivity associated with obesity-induced diabetes in mice	
		The RvD1 precursor 17-HDHA reduces adipose tissue inflammation and improves glucose tolerance in mouse models	
Chronic pancreatitis	Resolvins	RvD1 limits inflammation in the dorsal horn, limiting allodynia in rat models	

My Diploma Thesis

The aim of my diploma thesis:

Pro-resolving lipid mediators in the secretome of peripheral blood mononuclear cells.

What results do we expect?

Time-dependent secretion of resolvins D1-D4, resolvin E1, maresin 1, protectin.

Methodology:

ELISAs

Conclusion

- Resolution is an active process.
- Pro-resolving lipid mediators play a key role in the resolution of inflammation.
- Pro-resolving lipid mediators are involved in the mechanism of many diseases.

Thank you for listening!