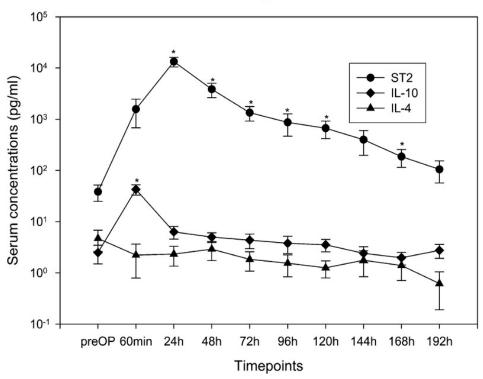
Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation

Open heart surgery with CPB

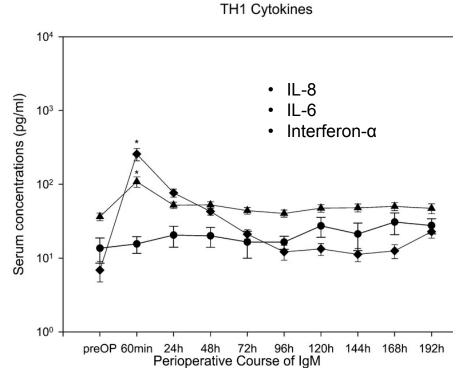
Coronary artery bypass graft

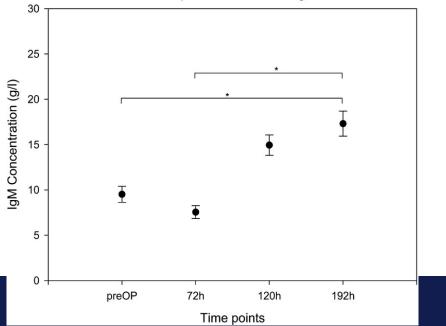


Coronary artery bypass graft

- Low mortality (2,63%)
- 10-25% mild respiratory dysfunction
- 2-5% severe respiratory dysfunction
 - —> High mortality

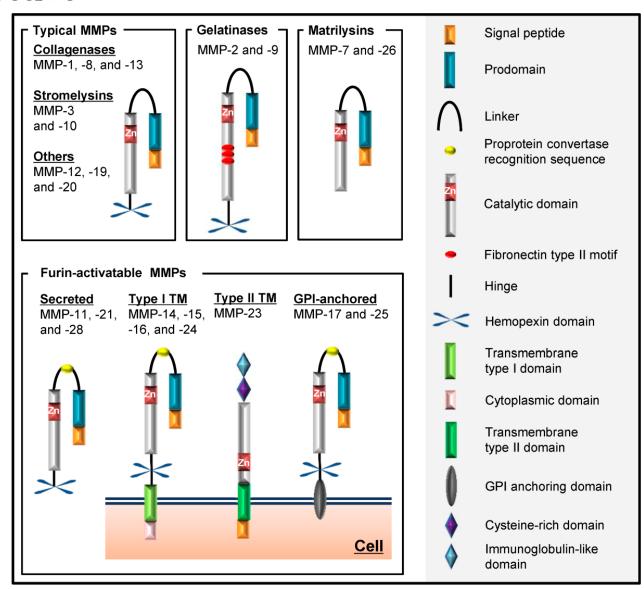
"Current status and outcomes of coronary revascularization 1999 to 2002: 148,396 surgical and percutaneous procedures" - Michael J.MackMD, Edmund R.BeckerPhD




 Elevation of both proinflammatory and anti-inflammatory mediators

—> multiple organ dysfunction

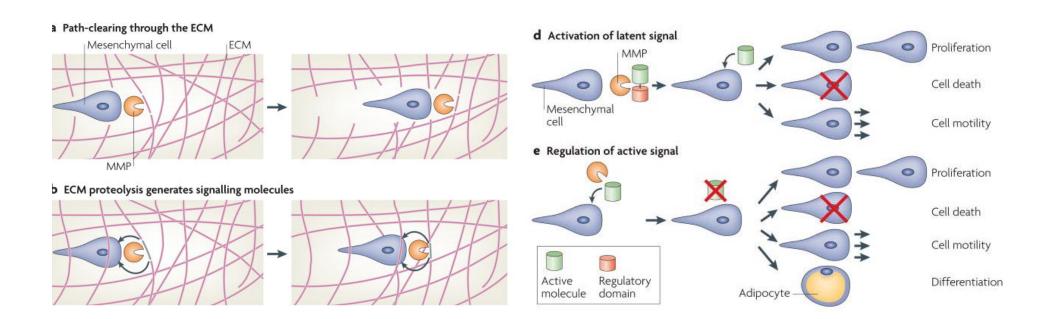
Secretion of Soluble ST2 – Possible Explanation for Systemic Immunosuppression after Heart Surgery - T. Szerafin¹ [*], T. Niederpold² [*], A. Mangold² [*], K. Hoetzenecker², S. Hacker², G. Roth³, M. Lichtenauer², M. Dworschak³, E. Wolner², H. J. Ankersmit


Matrix metalloproteinases

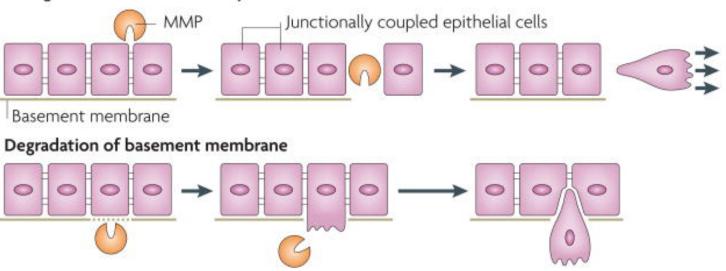
Matrix metalloproteinases

- Zinc- and calcium-dependent endopeptidases
 - —> metzincin superfamily
- produced in various types of cells, including
 - inflammatory
 - stromal
 - epithelial & endothelial cells
- MMP-2,19,28 and several MT-MMPs —> homeostasis
- Most induced by
 - infection
 - tissue injury (CABG)

Structure



"Matrix Metalloproteinases in Non-Neoplastic Disorders"


A. Tokito and

M. Jougasak

c Degradation of intercellular junctions

Functions

- Degradation
- Homeostatic functions
 - tissue remodeling
 - wound healing
 - immunity
- Shedding of cell surface receptors
- Mediate the bioactive state and local delivery of signaling molekules

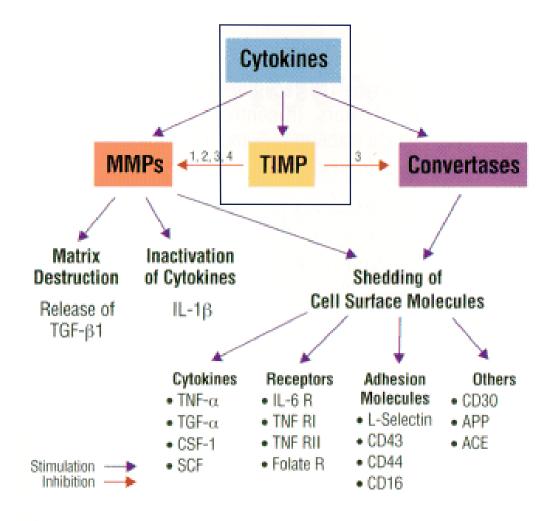
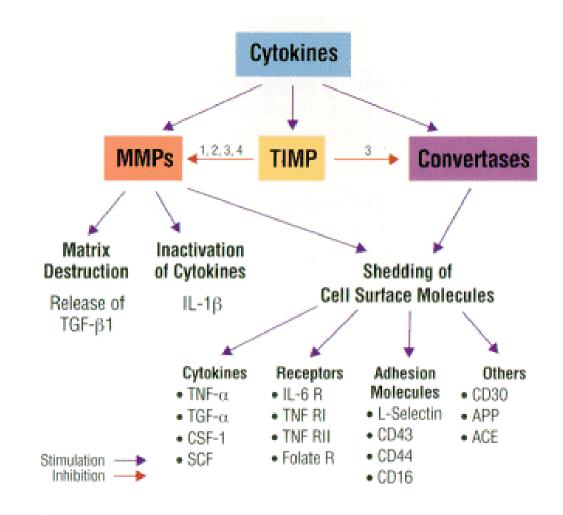
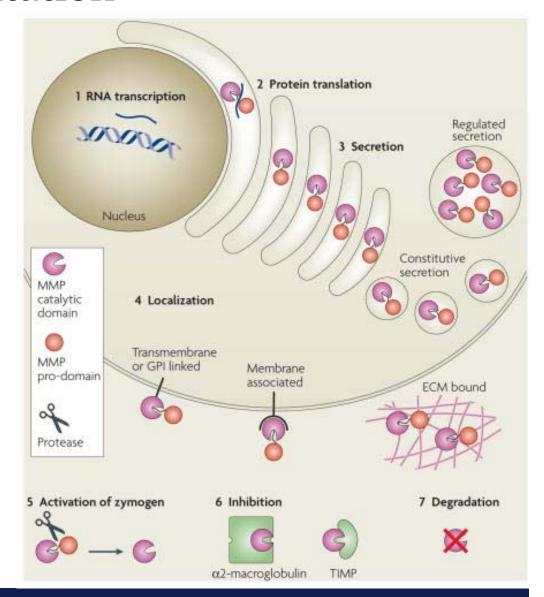


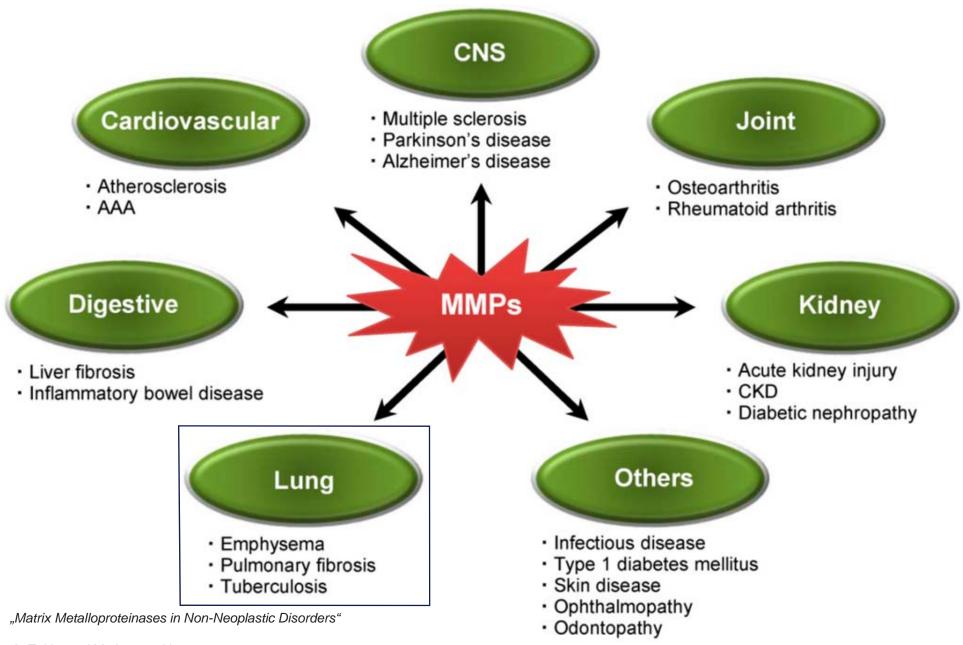
Figure 2. The MMP/Cytokine Connection

Activation vs Inhibitation

Activation

- —> disruption of cystein-switch
- Cytokines
 - TNF-α
 - IL-6, IL-8, IL-10
- Autolyse
- Proteinases
 - Plasmin
 - Trypsin
 - Furin
 - other MMPs
- Oxydation by reactive oxygen species


Figure 2. The MMP/Cytokine Connection

Activation vs Inhibitation

Inhibation

- General protease inhibtors
 - α₂-macroglobulin
 - Tissue inhibitors (**TIMPs**)
- Catalytic activity controlled by
 - Genexpression
 - Transcription
 - Translation
 - Zymogenactivation
 - Compartmentalization
 - RNA stability
 - TIMPs

Respiratory Dysfunction

- Pulmonary Emphysema (COPD)
 - alveolar macrophages (MMP-1,-9,-12)
- Interstitial Pulmonary Fibrosis
 - cleavage of basement membrane (acute lung injury)
 - collagen accumulation (MMP-1,-2,-3,-7,-9,-14)
- Asthma
 - chronic inflammation (MMP-2,-8,-9)
- Tuberculosis
 - destruction of the lung ECM for spreading (MMP-1,-2,-8,-9)

Lipocain 2

- Build a complex with MMP-9 —> stabilize
- Associated with higher incidence of
 - pulmonary failure
 - longer ICU stay
 - hospital stay

Kim T, Arnaoutakis GJ, Bihorac A, et al.

"Early blood biomarkers predict organ injury and resource utilization following complex cardiac surgery"

Therapeutic Implications

- Synthetic inhibitors
- Certain effects in experimental models
- All clinical trials failed
 - inadequate end points
 - metabolic instability
 - low oral availability
 - poor inhibitory specificity
 - adverse side effects
- Complex effects

Mechanical ventilation as solution to prevent systemic immune response

Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation

Material and methods

Table 1 $-$ Patient characteristics.								
Characteristics	VG (n = 15)	NVG (n = 15)	P value					
Gender (male/female) Age BMI (kg/m²)	12/3 65 (46-80) 29.0 ± 0.7	13/2 66 (47-76) 28.9 ± 0.9	0.62 0.86 0.65					
COPD Hypertension Ejection fraction (%) EuroSCORE	6 14 50 ± 5 5 (2-8)	6 10 53 ± 9 $4 (1-12)$	1.0 0.07 0.17 0.42					
Indication (elective/urgent) Creatinine (µmol/L)	11/4 84 (67–113)	9/6 75 (60–1132)	0.44					
Instable angina pectoris NYHA class III Preoperative stroke Status post-AMI	0 15 2 7	1 15 1 8	0.31 1.0 0.53 0.72					
Preoperative PCI	5	4	0.69					

AMI = acute myocardial infarction; BMI = body mass index; COPD = chronic obstructive pulmonary disease; DM = diabetes mellitus; NYHA = New York Heart Association; PCI = percutaneous coronary intervention.

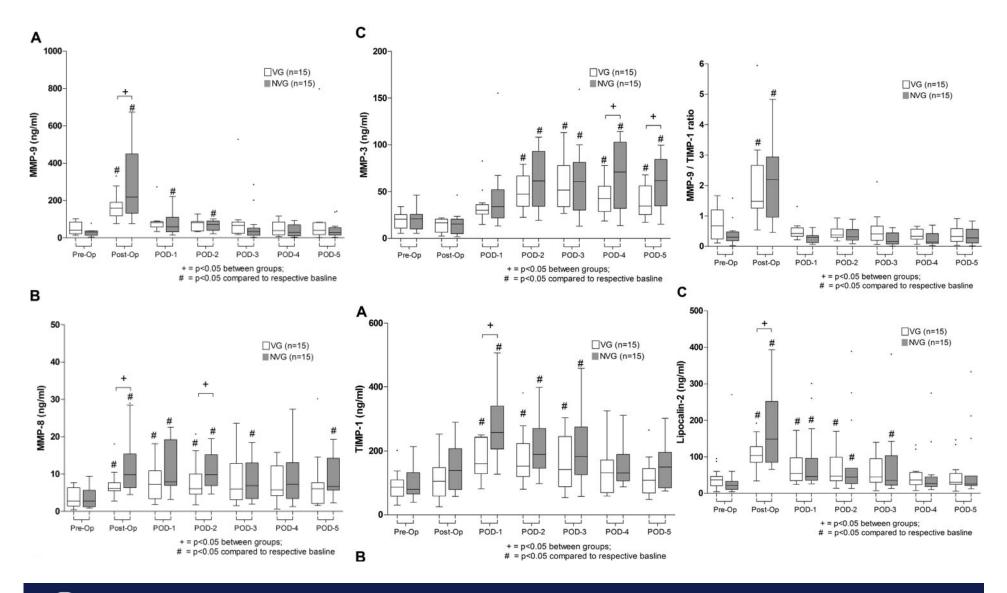
Data are given as mean \pm standard deviation, median (interquartile range), or absolute numbers, respectively.

Results

Table 2 $-$ Clinical characteristics of subjects.								
Clinical characteristics	VG	NVG	P value					
	(n = 15)	(n = 15)						
Number of grafts	4 (2-5)	4 (2-5)	0.72					
Aortic cross-clamp time (min)	55 ± 11	58 ± 17	0.24					
CPB duration (min)	95 ± 19	100 ± 25	0.66					
ICU stay (h)	22 (17-45)	50 (17-172)	0.82					
Hospital stay (d)	6 (6-12)	7 (6-19)	0.31					
Ventilation support (h)	9 (4.5-20)	8 (4.5-85)	0.70					
Blood loss (mL)	700 ± 400	600 ± 500	0.25					
Autotransfusion (mL)	350 ± 330	400 ± 370	0.53					
Units of RBC transfused	1 (0-5)	2 (0-6)	0.59					
Hb preoperative (g/dL)	13.6 ± 1.5	13.6 ± 1.6	0.73					
Hb at the end of surgery (g/dL)	9.8 ± 0.9	10.1 ± 1.2	0.37					
Hb POD-1 (g/dL)	10.9 ± 0.9	10.7 ± 1.2	0.89					
CRP POD-1 (mg/dL)	105 ± 68	142 ± 81	0.19					
CRP POD-5 (mg/dL)	45 ± 18.5	68 ± 44	0.08					
WBC POD-1 (G/L)	$\textbf{11} \pm \textbf{4}$	13 ± 4	0.048					
WBC POD-5 (G/L)	7 ± 2	8 ± 2	0.16					
Reoperation because of bleeding	0	0	1.0					
Atrial fibrillation postoperative	4	2	0.32					
Perioperative AMI	1	0	0.31					
Pericardial tamponade	0	0	1.0					
28-d mortality	0	0	1.0					

 $\begin{array}{lll} AMI = acute \ myocardial \ infarction; \ CRP = C\mbox{-reactive protein;} \\ Hb = hemoglobin; \ PCI = percutaneous \ coronary \ intervention; \\ RBC = red \ blood \ cells; \ WBC = white \ blood \ count. \end{array}$

Data are given as mean \pm standard deviation, median (interquartile range), or absolute numbers, respectively.


Oxygenation indices	T0	T1	T2	P value T1 versus T2	Т3	P value T1 versus T3	T4	P value T2 versus T4
PaO ₂ /FiO ₂ (mm Hg)								
NVG	385 ± 37	416 ± 140	291 ± 139	0.0013	265 ± 120	0.0072	253 ± 102	0.0002
VG	404 ± 50	475 ± 135	392 ± 121	0.011	362 ± 111	0.0019	335 ± 97	0.0081
P value between groups PEEP (mm Hg)	0.24	0.25	0.045	(0.029	_	0.0387	_
NVG		4	4	1.0	4 ± 1.8	0.10	4 ± 1.8	0.10
VG		4	4	1.0	4 ± 0.6	0.10	4 ± 0.6	0.06
P value between groups		1.00	1.00	_	0.25	_	0.32	·—

PaO2/FiO2 = Horovitz-Index; T0 = before induction of anesthesia; T1 = after the induction of anesthesia; T2 = at the end of surgery; T3 = immediately after admission to the ICU; <math>T4 = 6 h after surgery.

Data are given as mean \pm standard deviation.

Results

Results

- + Attenuation of systemic MMP-release and TIMP-1
- + Also decrease of LCN2!
- + Significantly higher PaO₂/FiO₂ ratio (Horovitz index)
- + Reduced alveolar-arterial oxygen difference (AaDO₂)
- + Decreased shunt fraction
- + Decrease of IL-10, sST2 and IL-6 concentrations

How does ventilation during CPB modulate the MMP-TIMP-LCN-2-axis?

How does ventilation during CPB modulate the MMP-TIMP-LCN-2-axis?

- 1. Reduction of pulmonary I/R injury
- 2. Influence on formation of pulmonary atelectasis and consecutive pulmonary neutrophil sequestration and activation
- 3. Activation of the complement system by mechanical shear stress

Discussion

Discussion

- Few clinical variables
- Small sample size
- No influence on
 - length of ventilatory support
 - duration of ICU
- Only venous serum samples
- Patients only with obstructive lung desease
- No lung function tests before operation
- => further research on high risk groups

Further discussion

- · Calvin S.H.Ng, MD et al.
 - Ventilation During Cardiopulmonary Bypass: Impact on Cytokine Response and Cardiopulmonary Function (2003)
 - -> No difference in MMP-9 plasma concentration
 - --> higher TIMP-1 levels in VG
- Jan-Uwe Schreiber, MD, PhD et al.

The Effect of Different Lung-Protective Strategies in Patients During Cardiopulmonary Bypass: A Meta-Analysis and Semiquantitative Review of Randomized Trials

- -> "weak evidence"
- -> "positive effects (...) short lived with questionable impact"
- --> Impact on ICU and Intubation times only reported by few studies
 - Ayad (2003)
 - Minkovic (2007)
 - John (2008)
- Hergrueter AH, Nguyen K, Owen CA.
 - Matrix metalloproteinases: all the RAGE in the acute respiratory distress syndrome
 - --> MMP-8 importent for pathogenesis of acute lung injury
- Kim JH, Suk MH, Yoon DW, et al.
 - Inhibition of matrix metalloproteinase-9 prevents neutrophilic inflammation in ventilator-induced lung injury
 - —> Inhibation of MMP-9 attenuated ventilator induced lung injury (animal model)

Thank you for your attention

