Genomic responses in mouse models poorly mimic human inflammatory diseases

Junhee Seok^{a,1}, H. Shaw Warren^{b,1}, Alex G. Cuenca^{c,1}, Michael N. Mindrinos^a, Henry V. Baker^c, Weihong Xu^a, Daniel R. Richards^d, Grace P. McDonald-Smith^e, Hong Gao^a, Laura Hennessy^f, Celeste C. Finnerty^g, Cecilia M. López^c, Shari Honari^f, Ernest E. Moore^h, Joseph P. Mineiⁱ, Joseph Cuschieri^j, Paul E. Bankey^k, Jeffrey L. Johnson^h, Jason Sperry^l, Avery B. Nathens^m, Timothy R. Billiar^l, Michael A. Westⁿ, Marc G. Jeschke^o, Matthew B. Klein^j, Richard L. Gamelli^p, Nicole S. Gibran^j, Bernard H. Brownstein^q, Carol Miller-Graziano^k, Steve E. Calvano^r, Philip H. Mason^e, J. Perren Cobb^s, Laurence G. Rahme^t, Stephen F. Lowry^{r,2}, Ronald V. Maier^j, Lyle L. Moldawer^c, David N. Herndon^g, Ronald W. Davis^{a,3}, Wenzhong Xiao^{a,t,3}, Ronald G. Tompkins^{t,3}, and the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program⁴

Contributed by Ronald W. Davis, January 7, 2013 (sent for review December 6, 2012)

Journal Club 11.11.2019

Katharina Klas, PhD Student

PNAS

Klas Katharina

Animal models

adapted from: aerzte-gegen-tierversuche-tierversuchsstatistiken, aerzte-gegen-tierversuchszahlen, annual-statistics-scientific-procedures-living-animals-2016

Genomic responses in mouse models poorly mimic human inflammatory diseases

Junhee Seok^{a,1}, H. Shaw Warren^{b,1}, Alex G. Cuenca^{c,1}, Michael N. Mindrinos^a, Henry V. Baker^c, Weihong Xu^a, Daniel R. Richards^d, Grace P. McDonald-Smith^e, Hong Gao^a, Laura Hennessy^f, Celeste C. Finnerty^g, Cecilia M. López^c, Shari Honari^f, Ernest E. Moore^h, Joseph P. Mineiⁱ, Joseph Cuschieri^j, Paul E. Bankey^k, Jeffrey L. Johnson^h, Jason Sperry^l, Avery B. Nathens^m, Timothy R. Billiar^l, Michael A. Westⁿ, Marc G. Jeschke^o, Matthew B. Klein^j, Richard L. Gamelli^p, Nicole S. Gibran^j, Bernard H. Brownstein^q, Carol Miller-Graziano^k, Steve E. Calvano^r, Philip H. Mason^e, J. Perren Cobb^s, Laurence G. Rahme^t, Stephen F. Lowry^{r,2}, Ronald V. Maier^j, Lyle L. Moldawer^c, David N. Herndon^g, Ronald W. Davis^{a,3}, Wenzhong Xiao^{a,t,3}, Ronald G. Tompkins^{t,3}, and the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program⁴

Contributed by Ronald W. Davis, January 7, 2013 (sent for review December 6, 2012)

Report a systematic comparison of the genomic response between human inflammatory diseases and mouse models

- Human burn
- Human trauma
- Human endotoxemia
- Murine burn
- Murine trauma
- Murine endotoxemia

- Human trauma patients
 - Blunt injury associated with
 - Prehospital or emergency department systolic hypotension
 - Elevated base deficit
 - Blood transfusion requirement
 - Abbreviated injury scale score >2 for any body region (exclusive of brain)
- Human burn patients
 - Enrolled if admitted to burn centre within 96h after injury
 - Burns ≥20% of TBSA
 - Required at least one excision and grafting procedure
- All patients: treated according to SOPs

- Human Endotoxemia
 - 8 healthy male & female subjects between 18 40 years
 - i.v. administration of
 - either E. Coli 2ng/kg body weight
 - or 0.9% sodium chloride over a 5min period

Methods	Male C57BL/6J mice, 8 weeks; Jackson Laboratories			
Trauma	Burn	Endotoxemia		
 Trauma/haemorrhage (T/H) Laparotomy followed by withdrawal of sufficient blood 	• 25% TBSA scald burn	 10ng i.p. injection of LPS, E. Coli 		
 Control mice underwent sham T/H 	 Control mice underwent sham burning 			
MEDICAL UNIVERSITY OF VIENNA	Klas Katharina	13		

- Isolation of total blood leukocytes
- Extraction of total cellular RNA and subsequent hybridization onto Affymetrix HU133 Plus 2.0 GeneChip
- Max. fold changes of gene expression were measured in log scale between patients and healthy subjects

5,544 genes		
	4,918 genes	
Significant gene changes comparing healthy subjects and patients	Murine orthologs found among the initially genes considered to be significant	

5,544 genes			
	4,918 genes		
Significant gene changes comparing healthy subjects and patients		Pearson correlation (R ²)	
	Murine orthologs found among the initially genes considered to be significant	Explaining the strength of the relationship between two variables	

The higher (the closer to 1) the R² value, the higher/stronger is the correlation between two evaluated factors/models/situations.

Results in log twofold changes of 4,918 genes of human genes vs. murine orthologs

 Highest correlation between human burn & human trauma

Klas Katharina

- Highest correlation between human burn & human trauma
- Moderate correlation between human injury & human endotoxemia

- Highest correlation between human burn & human trauma
- Moderate correlation between human injury & human endotoxemia
- Poor correlation between murine models

- Highest correlation between human burn & human trauma
- Moderate correlation between human injury & human endotoxemia
- Poor correlation between murine models
- Almost random correlation between murine & human conditions

Comparison of the temporal response patterns between human and murine conditions

Assessment of temporal response patterns

Queried gene changes in human vs. murine models over time course

Analysed time-course pattern of the expression of each gene by clustering

Reduced gene expres	ssion	Increased gene expression
-3	0	3

Klas Katharina

- Similar changes in gene expression pattern over time within human burn vs. human trauma
 - Even though variation in time course

- Similar changes in gene expression pattern over time within human burn vs. human trauma
 - Even though variation in time course
- Moderate correlation between human injury & human endotoxemia

- Similar changes in gene expression pattern over time within human burn vs. human trauma
 - Even though variation in time course
- Moderate correlation between human injury & human endotoxemia
- Rather poor correlation between murine models

- Similar changes in gene expression pattern over time within human burn vs. human trauma
 - Even though variation in time course
- Moderate correlation between human injury & human endotoxemia
- Rather poor correlation between murine models
- Almost random correlation between murine & human conditions

Fig. 2B: Comparison of recovery times of gene changes in human burns, trauma, and endotoxemia vs. murine model

Fig. 2B: Comparison of recovery times of gene changes in human burns, trauma, and endotoxemia vs. murine model

Fig. 2C: Comparison of gene expression changes in human burns, trauma, and endotoxemia vs. murine model in the context of HLA-DRA

Fig. 2C: Comparison of gene expression changes in human burns, trauma, and endotoxemia vs. murine model in the context of HLA-DRA

MEDICAL UNIVERSITY

Comparison of significantly regulated pathways between human and murine conditions

Assessment of pathway changes

Identification of major signalling pathways in human injury Comparison to human endotoxemia and murine models

Fig. 3: Pathway comparison in human burns, trauma, and endotoxemia vs. murine model

Activated Pathways

R² of the five most activated/suppressed pathways

Negative correlations are shown in - R^2

Reference: Human injury

MEDICAL UNIVERSITY OF VIENNA

Klas Katharina

Fig. 3: Pathway comparison in human burns, trauma, and endotoxemia vs. murine model

Human			
innate immunity	up-regulated		
adaptive immunity	down-regulated		

Pathway comparison between human vs. murine model				
	Human Trauma			
	Correlation in %			
	median	min.	max.	
Human Endotoxemia	95%	82%	100%	
Mouse Burn	65%	48%	79%	
Mouse Trauma	51%	35%	71%	
Mouse Endotoxemia	61%	43%	80%	

Activated Pathways

MEDICAL UNIVERSITY OF VIENNA

Klas Katharina

Comparison of additional acute inflammatory diseases and mouse models

Fig. 4: Comparison of the genomic response to severe acute inflammation

Human: genomic responses correlate well with each other

Mouse: human genomic responses are poorly mimicked by mouse model

Disease	GEO accession	R ²	Percent
Human			
Burns <mark>(as reference)</mark>	GSE37069	1.00	100
Trauma	GSE36809	0.91	97
Endotoxemia (test)	GSE3284	0.47	88
Endotoxemia (verification)	GSE3284	0.59	90
ARDS	GSE10474	0.55	84
Sepsis	GSE13904	0.76	93
Sepsis	GSE9960	0.64	87
Sepsis	GSE13015	0.61	86
Sepsis	GSE28750	0.63	85
Acute Infection	GSE6269	0.50	83
Mouse			
Burns	GSE7404	0.08	60
Trauma	GSE7404	0.05	61
Endotoxemia	GSE7404	0.00	47
Endotoxemia	GSE5663	0.00	50
ARDS	GSE19030	-0.01	48
Sepsis (CLP)	GSE5663	0.03	53
Sepsis (CLP-Mild)	GSE5663	0.02	52
Sepsis	GSE19668	0.05	58
Sepsis	GSE26472	0.02	55
Infection	GSE20524	0.08	61

 R^2 represents Pearson correlation. Negative correlations are shown as $-R^2$. Percent represents the percentages of genes changed to the same direction between the two datasets. CLP, cecal ligation and puncture.

Fig. 4: Comparison of the genomic response to severe acute inflammation

Correlation (R²) vs. directionality (%)

Human: genomic responses correlate well with each other

Mouse: human genomic responses are poorly mimicked by mouse model

Conclusion

Klas Katharina

Conclusion

Genomic changes in Human Burn & Human Trauma correlate strongly while there is a moderate correlation to Human Endotoxemia.

Genomic changes in Murine Burn, Murine Trauma & Murine Endotoxemia correlate rather poorly.

Genomic changes in Human vs. Murine models correlate more or less randomly.

Genomic responses in murine models poorly mimic human inflammatory diseases.

Discussion

Klas Katharina

Discussion

- Patients received drugs that may affect their pathophysiologic and genomic responses
- despite large heterogeneities in human patients → highly consistent genomic response in patients

Discussion

Why do mouse models mimic human diseases so poorly?

- Evolutionary distance
- Complexity of human disease
- Inbred nature of the mouse
- Differences in cellular composition
- Different temporal spans in recovers

