Quality by Design (QbD)

Helmut Hofbauer Journal Club, 6 December 2021

Issues

- What is part of Quality by Design (and what isn't)?
- Is only the enhanced approach QbD?
- Is the minimal approach also Qbd (as it involves risk assessment)?
- What was the development process before ICH Q8 (traditional approach)?
- To what extent is QbD mandatory?

ICH Q8 – from ICH website

https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE

ICH HARMONISED TRIPARTITE GUIDELINE

PHARMACEUTICAL DEVELOPMENT Q8(R2)

Current Step 4 version dated August 2009

Where the documents can be found...

https://www.ich.org/page/ich-guidelines

pharmacogenetics/genomics techniques

to produce better targeted medicines.

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Transfer of Regulatory Information (ESTRI).

Q14 Analytical Procedure Development

https://www.ich.org/page/quality-guidelines

Quality Guidelines Harmonisation achievements in the Quality area include pivotal milestones such as the conduct of stability studies, defining relevant thresholds for impurities testing and a more flexible approach to pharmaceutical quality based on Good Manufacturing Practice (GMP) risk management. Q1A - Q1F Stability V Q2 Analytical Validation V Q3A - Q3E Impurities V Q4A - Q4B Pharmacopoeias V Q5A - Q5E Quality of Biotechnological Products V Q6A- Q6B Specifications V Q7 Good Manufacturing Practice \sim Q8 Pharmaceutical Development V Q9 Quality Risk Management V Q10 Pharmaceutical Quality System V Q11 Development and Manufacture of Drug Substances V Q12 Lifecycle Management V Q13 Continuous Manufacturing of Drug Substances and Drug Products V

V

https://www.ich.org/page/quality-guidelines

Q5A - Q5E Quality of Biotechnological Products	~
Q6A- Q6B Specifications	~
Q7 Good Manufacturing Practice	~
Q8 Pharmaceutical Development	^
> Q8(R2) Pharmaceutical Development	
> Q8/9/10 Q&As (R4) Q8/Q9/Q10 - Implementation	
Q9 Quality Risk Management	~
Q10 Pharmaceutical Quality System	
Q11 Development and Manufacture of Drug Substances	~
Q12 Lifecycle Management	~

https://www.ich.org/page/quality-guidelines

Q8 Pharmaceutical Development

Q8(R2) Pharmaceutical Development

The core ICH Harmonised Guideline was finalised under Step 4 in November 2005. This Guideline is intended to provide guidance on the contents of Section 3.2.P.2 (Pharmaceutical Development) for drug products as defined in the scope of Module 3 of the Common Technical Document (ICH topic M4). The quideline does not apply to contents of submissions for drug products during the clinical research stages of drug development. However, the principles in this guideline are important to consider during these stages. This guideline might also be appropriate for other types of products. To determine the applicability of this guideline for a particular type of product, applicants should consult with the appropriate regulatory authorities. The annex to the Harmonised ICH text was

finalised under Step 4 in November 2008 and

https://ich.org/page/presentations

Presentations

Basic Training	
Introduction to ICH and the new Quality Paradigm	ppt
ICH Q9: Quality Risk Management	Q9 Briefing pack
How ICH Q8, Q9, Q10 Guidelines are working together throughout the product life cycle	ppt swf
Enhanced Training Elements: Key Messages	
Design Space	ppt
Control Strategy	ppt
Pharmaceutical Quality System	ppt
Quality Risk Management	ppt

https://ich.org/page/presentations

Quality Risk Management	ppt
Enhanced Training Element: Case Study	ppt
Product Development	ppt swf
Regulatory Assessment	ppt swf
Manufacturing Implementation and PQS Considerations	ppt swf
Inspection	ppt swf
Questions & Answers Document	pdf
Report on ICH Q-IWG Activities	ppt swf

https://www.ich.org/page/quality-guidelines

Q8 Pharmaceutical Development

>

Q8(R2) Pharmaceutical Development

V Q8/9/10 Q&As (R4) Q8/Q9/Q10 - Implementation

Since reaching *Step 4* and publication within the ICH regions, experiences by all parties with the implementation of the ICH Q8(R2), Q9 and Q10 Guidelines have resulted in the need for some clarification. The Questions and Answers developed by the Quality Implementation Working Group (IWG) are intended to facilitate the implementation of the Q8(R2), Q9 and Q10 Guidelines, by clarifying key issues.

The document with the first set of Q&As was finalised under *Step 4* in April 2009. Since then, new sets of questions were added three times, with the most recent version (Q8/Q9/Q10 Q&As (R4)) approved by the Steering Committee in November 2010. The

へ

...in Eudralex Vol. 3 – EMA scientific guidelines

https://ec.europa.eu/health/documents/eudralex/vol-3_en

An official website of the European Union How do you know? 🗸		
Home > Live, work, travel in the EU > Public Health > Medicinal products >		
Medicinal products		
	♠ ● All topics	

EudraLex - Volume 3 - Scientific guidelines for medicinal products for human use

Volume 3 of the publications "The rules governing medicinal products in the European Union" contains scientific guidelines prepared by the Committee for Medicinal Products for Human Use (CHMP) in consultation with the competent authorities of the EU Member States, to help applicants prepare marketing-authorisation applications for medicinal products for human use.

Guidelines are intended to provide a basis for practical harmonisation of the manner in which the EU Member States and the EMA interpret and apply the detailed requirements for the demonstration of quality, safety and efficacy contained in the Community Directives. They also help to ensure that applications for marketing authorisation are prepared in a manner that will be recognised as valid by the EMA.

For more information, see EMA Scientific guidelines.

EMA scientific guidelines for QdB

https://www.ema.europa.eu/en/human-regulatory/researchdevelopment/scientific-guidelines/quality/quality-quality-design-qbd

Adaptive pathways	Quality: C
Advanced therapies	Table of contents
Clinical trials	GuidelinesQuestions and an
Compassionate use	The European Medi
Compliance	developers prepare
Data on medicines (ISO IDMP standards)	For a complete list of
Ethical use of animals	Guidelines
Innovation in medicines	ICH Q8 (R2) PhaICH Q9 Quality r
Medicines for older people	ICH Q10 Pharma ICH quideline Q1
Orphan designation	ICH Q8, Q9 and
Paediatric medicines	ICH guideline Q1Real time release
Pharmacovigilance	 Use of near infra requirements for

Ouality: Quality by Design (QbD) < Share

nswers

cines Agency's scientific quidelines on Quality by Design help medicine marketing authorisation applications for human medicines.

scientific guidelines currently open for consultation, see Public consultations.

- rmaceutical development
- isk management
- aceutical quality system
- 3 on continuous manufacturing of drug substances and drug products
- Q10 questions and answers
- .3 on continuous manufacturing of drug substances and drug products
- e testina
- ared spectroscopy (NIRS) by the pharmaceutical industry and the data new submissions and variations

...in Eudralex Vol. 3 – EMA scientific guidelines

https://www.ema.europa.eu/en/documents/scientific-guideline/international-conferenceharmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf

22 June 2017 EMA/CHMP/ICH/167068/2004 Committee for Human Medicinal Products

ICH guideline Q8 (R2) on pharmaceutical development Step 5

Transmission to CHMP	December 2004
Transmission to interested parties	December 2004
Deadline for comments	June 2005
Final adoption by CHMP	November 2005
Date for coming into effect	May 2006
Editorial corrections	August 2009

EMA website for Qdb

https://www.ema.europa.eu/en/human-regulatory/researchdevelopment/quality-design

Adaptive pathways	Quality by design <share< th=""></share<>
Advanced therapies	Table of contents
Clinical trials	Guidance documentsParallel assessment with the United States
Compassionate use	PAT team mandate
Compliance	Presentations and conference documents This content applies to human and veterinary medicines.
Data on medicines (ISO IDMP standards)	The European Medicines Agency (EMA) welcomes applications that include quality by desig Quality by design is an approach that aims to ensure the quality of medicines by employing
Ethical use of animals	statistical, analytical and risk-management methodology in the design, development and manufacturing of medicines.
Innovation in medicines	One of the goals of quality by design is to ensure that all sources of variability affecting a process are
Medicines for older people	identified, explained and managed by appropriate measures. This enables the finished medicine to consistently meet its predefined characteristics from the start - so that it is 'right first time'.
Orphan designation	Quality by design centres on the use of multivariate analysis , often in combination with modern

ign. ۱g

...in Eudralex Vol 4 (Good Manufacturing Practice)

https://ec.europa.eu/health/documents/eudralex/vol-4_en

- See transitional arrangement for toxicological evaluation on pages 1-2 of Chapter 5
- Previous version
- Chapter 6 Quality Control <a>[] (into operation since 1 October 2014)

- Chapter 9 Self Inspection J Comment

Part II - Basic Requirements for Active Substances used as Starting Materials

Part III - GMP related documents

- Site Master File J 🖓
- Q9 Quality Risk Management
- Q10 Note for Guidance on Pharmaceutical Quality System J
- MRA Batch Certificate 🔎
- Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities
- · Guidelines of 19 March 2015 on the formalised risk assessment for ascertaining the appropriate good manufacturing practice for

"ICH Q7"

ICH Q9, Q10

Objective of ICH Q8

Title of ICH Q8 is "PHARMACEUTICAL DEVELOPMENT" – not "QUALITY BY DESIGN"!

"1. INTRODUCTION

1.1 Objective of the Guideline

This guideline describes the **suggested contents for the 3.2.P.2 (Pharmaceutical Development) section** of a regulatory submission in the ICH M4 Common Technical Document (CTD) format"

ICH Q8(R2), part I.

Structure of CTD section 3.2.P.2

	1/
3.2.P.1 Description and Composition of the Drug Product (name, dosage form)	17
3.2.P.2 Pharmaceutical Development (name, dosage form)	17
3.2.P.2.1 Components of the Drug Product (name, dosage form)	17
3.2.P.2.1.1 Drug Substance (name, dosage form)	17
3.2.P.2.1.2 Excipients (name, dosage form)	17
3.2.P.2.2 Drug Product (name, dosage form)	
© EMEA 2006	4
3.2.P.2.2.1 Formulation Development (name, dosage form)	18
3.2.P.2.2.1 Formulation Development (name, dosage form)3.2.P.2.2.2 Overages (name, dosage form)	
 3.2.P.2.2.1 Formulation Development (name, dosage form) 3.2.P.2.2.2 Overages (name, dosage form) 3.2.P.2.2.3 Physicochemical and Biological Properties (name, dosage form) 	
 3.2.P.2.2.1 Formulation Development (name, dosage form) 3.2.P.2.2.2 Overages (name, dosage form) 3.2.P.2.3 Physicochemical and Biological Properties (name, dosage form) 3.2.P.2.3 Manufacturing Process Development (name, dosage form) 	
 3.2.P.2.2.1 Formulation Development (name, dosage form) 3.2.P.2.2.2 Overages (name, dosage form) 3.2.P.2.3 Physicochemical and Biological Properties (name, dosage form) 3.2.P.2.3 Manufacturing Process Development (name, dosage form) 3.2.P.2.4 Container Closure System (name, dosage form) 	
3.2.P.2.2.1 Formulation Development (name, dosage form)	
 3.2.P.2.2.1 Formulation Development (name, dosage form)	

ICH Topic M 4 Q Common Technical Document for the Registration of Pharmaceuticals for Human Use - Quality. Step 5.

Structure of ICH Q8

PART I: PHARMACEUTICAL DEVELOPMENT

Drug substance | excipients | drug product | formulation development | overages | physicochemical and biological properties | manufacturing process development | Microbiological attributes | compatibility

PART II: ANNEX TO PHARMACEUTICAL DEVELOPMENT

- Quality Target Product Profile (QTPP)
- Critical Quality Attributes (CQAs)
- Risk Assessment
- Design Space
- Control Strategy
- Product Life Cycle Management

SUBMISSION OF PHARMACEUTICAL DEVELOPMENT (in CTD)

- Quality Risk Management and Product and Process Development
- Design Space
- Control Strategy
- Drug Substance Related Information

Appendix 1 (Differing Approaches...)

Appendix 2 (Illustrative Examples)

Mention of QdB in part I of ICH Q8

2. PHARMACEUTICAL DEVELOPMENT

The aim of pharmaceutical development is to design a quality product and its manufacturing process to consistently deliver the intended performance of the product. The information and knowledge gained from pharmaceutical development studies and manufacturing experience provide scientific understanding to support the establishment of the design space^{*}, specifications, and manufacturing controls.

Information from pharmaceutical development studies can be a basis for quality risk management. It is important to recognize that quality* cannot be tested into products;

1

See Glossary for definition

Pharmaceutical Development

i.e., quality should be built in by design Changes in formulation and manufacturing

Background: QdB – initiative of the FDA

"At an <u>October 2005</u> workshop [...] FDA deputy commissioner Janet Woodcock discussed the state of drug development. She described it as <u>"costly, wasteful, and encouraging industry to conduct more tests and file more data than needed [leading] to drug shortages, slower drug development, and intensive regulatory <u>oversight"</u> (3).</u>

In an effort to address those issues, the FDA established a **pharmaceutical quality assessment system (PQAS)** and outlined the agency's thinking in the article *Pharmaceutical CGMPs for the 21st Century: A Risk-Based Approach* (1).

The PQAS was designed to stimulate manufacturers to adopt modern pharmaceutical product-development approaches leading to a desired state of drug regulation, which would result in, according to Woodcock, "a maximally efficient, agile, flexible pharmaceutical-manufacturing sector <u>that reliably</u> <u>produces high-quality drugs without extensive regulatory oversight</u>" (3).

<u>To that end, the concept of QbD was introduced</u> as a means for manufacturers to achieve the desired state."

Michael Torres: "Challenges in Implementing Quality By Design: An Industry Perspective" (16 June 2015) https://bioprocessintl.com/analytical/downstream-development/challenges-in-implementing-quality-by-design-an-industry-perspective/

From "Testing quality into products" to QbD

History of QdB in pharmaceutical development

Amanda Guiraldelli (US Pharmacopoeia): "Introduction to Analytical Quality by Design (AQbD)principles", 15 April 2021. <u>https://www.youtube.com/watch?v=ZoYBTeTJmm4&t=1021s</u>

Quality by Design (QbD)

Definition

Quality by Design (QbD):

A <u>systematic approach</u> to development that begins with <u>predefined objectives</u> and emphasizes <u>product and process</u> <u>understanding</u> and <u>process control</u>, based on sound science and <u>quality risk management</u>.

ICH Q8(R2), part II, Glossary

Traditional approach vs. QbD

Dr Evdokia Korakianiti "Quality by Design". Process Analytical Technology and Risk-based CMC development", 2nd EMEA Workshop for SMEs: "Focus on Quality" https://www.ema.europa.eu/en/documents/presentation/quality-design-process-analytical-technology-risk-based-cmc-development-kowid-ho_en.pdf

Design space and real time release testing are <u>not</u> part of QdB

Question	Answer
"Is it always necessary to have a Design Space (DS) or Real Time Release (RTR) testing to implement QdB?"	"Under Quality by Design, establishing a <u>design space or</u> <u>using real time release testing</u> is <u>not</u> necessarily expected [ICH Q8(R2), Step 4]."

ICH guideline Q8, Q9 and Q10 - questions and answers volume 4, step 5.

Process Analytical Technology (PAT)

Definition

Process Analytical Technology (PAT):

A system for designing, analyzing, and controlling manufacturing through <u>timely measurements (i.e., during</u> <u>processing)</u> of <u>critical quality and performance attributes of</u> <u>raw and in-process materials and processes</u> with the goal of ensuring final product quality.

ICH Q8(R2), part I, Glossary

Testing, without drawing samples (in-line), of CQAs and CPPs
& controlling the process on the basis of the test results

Real Time Release Testing

Definition

Real Time Release Testing:

The ability to evaluate and ensure the quality of in-process and/or final product based on process data, which typically include a valid combination of measured material attributes and process controls.

ICH Q8(R2), part II, Glossary

= Ensures CQA of intermediates or final product by measuring CMAs and CPPs (in-line).

= May substitute end product testing

Traditional vs enhanced manufacturing process

Real time release (RTR) testing does <u>not</u> affect batch release and product specifications

Question	Answer
"How is <u>batch release</u> affected by employing real time release testing?"	"Batch release is the final decision to release the product to the market <u>regardless whether</u> <u>RTR testing or end testing is employed</u> . [] Batch release involves independent review of batch conformance to predefined criteria through review of testing results and manufacturing records together with appropriate GMP compliance. []"
"Does real time release testing mean the <u>elimination</u> <u>of end product testing</u> ?"	Not necessarily: "For example, an applicant may propose RTR testing for some attributes only or not all. []"
"Is a <u>product specification</u> <u>still necessary</u> in the case of RTR testing?"	" <u>Yes</u> product specifications [see ICH Q6A and Q6B] still need to be established and met, when tested."

ICH guideline Q8, Q9 and Q10 - questions and answers volume 4, step 5.

Critical Quality Attribute (CQA)

Definition

Critical Quality Attribute (CQA):

<u>A physical, chemical, biological or microbiological property or characteristic that should be within an appropriate limit, range</u>, or distribution to ensure the desired product quality. ICH Q8(R2), part II, Glossary

Critical Process Parameter (CPP)

Definition

Critical Process Parameter (CPP):

A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. ICH Q8(R2), part II, Glossary

CMAs, CPPs, CQAs and Unit Operations

Understanding pharmaceutical quality by design. Yu LX, et al. AAPS J. 2014. PMID: 24854893 Free PMC article. Review.

CMAs, CPPs, CQAs and unit operations

Unit operations:

Traditional approach vs. QbD

Appendix 1. Differing approaches to pharmaceutical development

The following table has been developed to illustrate some potential contrasts between what might be considered a minimal approach and an enhanced, quality by design approach regarding different aspects of pharmaceutical development and lifecycle management. The comparisons are shown merely to aid in the understanding of a range of potential approaches to pharmaceutical development and should not be considered to be all-encompassing. The table is not intended to specifically define the only approach a company could choose to follow. In the enhanced approach, establishing a design space or using real time release testing is not necesserily expected. Current practices in the pharmaceutical industry vary and typically lie between the two approaches presented in the table.

Aspect	Minimal Approaches	Enhanced, Quality by Design Approaches
Overall	Mainly empirical	Systematic, relating mechanistic

ICH Q8(R2), Appendix 1

"Minimal approach" vs. QbD - table

Aspect	Minimal approaches	Enhanced, QdB Approaches
Pharmaceut. Development	 Mainly <u>empirica</u>l Research <u>on variable at a time</u> 	 Systematic (relating CMAs & CPPs to CQAs) Multivariate experiments Design space PAT
Manufacturing Process	 <u>Fixed</u> <u>Validation based on initial full-scale</u> <u>batches</u> Focus on optimisation & <u>reproducibility</u> 	 Adjustable within design space Lifecycle approach to validation (ideally continuous process verification) Focus on control strategy & robustness Use of statistical process control methods
Process Controls	 <u>In-process controls for go/ no-go</u> <u>decisions</u> <u>Off-line analysis</u> 	 PAT tools with feed forward & feedback controls Process operations tracked & trended
Product Specifications	 <u>Primary means of control</u> Based on (available) batch data 	Part of control strategyBased on desired product performance
Control Strategy	 Drug product quality controlled by <u>in-</u> process and end product testing 	 Drug product quality ensured by risk-based control strategy Quality controls <u>shifted upstreams</u> (→real-time release testing or reduced end product testing
Lifecycle Management	 Reactive (=problem solving) 	 Preventive action Continual improvement facilitated

ICH Q8(R2), Appendix 1, table, p. 18

Quality by Testing (QbT) vs QbD

ICH presentation: How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

"Pharmaceutical development should include at a minimum, the following elements:"

Μ	inimal	Enhanced, QdB strategy				
•	Defining <u>QTPP</u>	•	Defining <u>QTPP</u>			
•	Identifying drug product <u>CQAs</u>	•	Identifying drug product <u>CQAs</u>			
•	Determining <u>CQAs</u> of drug substance, excipients, etc.	•	Determining <u>CQAs</u> of drug substance, excipients, etc.			
•	Selecting appropiate <u>manufacturing</u> process	•	Selecting appropiate <u>manufacturing</u> <u>process</u>			
		•	Identifying (through prior knowledge, experimentation & risk assessment) CMAs and CPPs that can have an affect on drug product CQAs			
		•	Determining functional relationships between CMAs, CPPs & CQAs			
•	Defining a <u>control strategy</u>	•	Defining a control strategy which can incluce design space(s) and real-time release testing			

ICH Q8(R2), part II, p. 10

Quality by Testing (QbT) vs QbD

Lan Zhang, Shirui Mao, Application of quality by design in the current drug development, Asian Journal of Pharmaceutical Sciences (2016), doi: 10.1016/j.ajps.2016.07.006

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Process Robustness

Definition

Process Robustness:

Ability of a process to <u>tolerate variability of materials and</u> <u>changes of the process and equipment</u> without negative impact on quality.

ICH Q8(R2), part I, Glossary

QbD process steps

Andre S. Raw (FDA): "Quality by Design (Qbd) for Topical Dermatologic Products", https://pqri.org/wp-content/uploads/2015/08/pdf/Raw.pdf

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

QbD process steps

DESIGN & UNDERSTANDING

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Processes and documents in QdB

Gary Warren: "Quality by Design (QbD) Overview", Oct. 2015, CSL Behring Pty Ltd, Broadmeadows, Victoria, Australia. <u>https://www.pda.org/docs/default-source/website-document-library/chapters/presentations/australia/quality-by-design-(qbd)-</u>

Understanding QbD

- Initial Confusion
- Research and discussion
- Reaching understanding:
 - QbD is a process defined by documentation requirements

QbD

- Is similar to PDCA (iterative)
- Focuses on risk based approaches
- Encourages continuous improvement
- Intends to design capable processes

Definition

Quality Target Product Profile (QTPP):

A <u>prospective</u> summary of the quality characteristics of a drug product that <u>ideally</u> will be achieved to ensure the desired quality, taking into account safety and efficacy of the drug product.

ICH Q8(R2), part II, Glossary

07_The_Case_Study.ppt, Slide 9

ICH Quality Implementation Working Group - Integrated Implementation Training Workshop Case Study							
Quality Target Product Profile defines the objectives for development							
Dosage form and strength	Immediate release tablet taken orally containing 30 mg of active ingredient						
Specifications to assure safety and efficacy during shelf-life	Assay, Uniformity of Dosage Unit (content uniformity) and dissolution						
Description and hardness	Robust tablet able to withstand transport and handling						
Appearance	Film-coated tablet with a suitable size to aid patient acceptability and compliance Total tablet weight containing 30 mg of active ingredient is 100 mg with a diameter of 6 mm						

Information as in Summary of Product Characteristics (SmPC) (=Beipackzettel, Fachinformation)

07_The_Case_Study.ppt, Slide 10

11	ICH Quality In	nplementation Wor	rking Group - Ir	ntegrated Imp	lementation	Training Workshop
----	----------------	-------------------	------------------	---------------	-------------	-------------------

Case Study

Quality Target Product Profile (QTPP)

Safety and Efficacy Requirements

Tablet	Characteristics / Requirements	Translation into Quality Target Product Profile (QTPP)
Dose	30 mg	Identity, Assay and Uniformity
Subjective Properties	No off-taste, uniform color, and suitable for global market	Appearance, elegance, size, unit integrity and other characteristics
Patient Safety – chemical purity	Impurities and/or degradates below ICH or to be qualified	Acceptable hydrolysis degradate levels at release, appropriate manufacturing environment controls
Patient efficacy – Particle Size Distribution (PSD)	PSD that does not impact bioperformance or pharm processing	Acceptable API PSD Dissolution
Chemical and Drug Product Stability: 2 year shelf life (worldwide = 30°C)	Degradates below ICH or to be qualified and no changes in bioperformance over expiry period	Hydrolysis degradation & dissolution changes controlled by packaging

ICH presentation: Breakout A Design Space

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Risk Assessment

Function

2.3 Risk Assessment: Linking Material Attributes and Process Parameters to Drug Product CQAs

Risk assessment is a valuable <u>science-based process</u> used <u>in</u> <u>quality risk management</u> (see ICH Q9) that can aid in <u>identifying which material attributes and process</u> <u>parameters potentially have an effect on product CQAs</u>. ICH Q8(R2), part II

Risk Assessment

07_The_Case_Study.ppt, Slide 15

Overall Risk Assessment for Process

 no imp known current 	act to CQA or potential impact to CQA t controls mitigate risk		Process Steps										
 known additio 	or potential impact to CQA nal study required		Drug Substance Drug Product										
* include (API pur	es bioperformace of API and sa ity)	Coupling Reaction	Aqueous Extractions	Distillative Solvent Switch	Semi-Continuous Crystallization	Centrifugal Filtration	Rotary Drying	Manufacture Moisture Control	Blending	Lubrication	Compression	Coating	Packaging
	in vivo performance*												
	Dissolution												
	Assay												
	Degradation												
	Content Uniformity												
	Appearance												
	Friability												
	Stability-chemical												
	Stability-physical												

Risk Assessment is part of the Quality Risk Management process

ICH Q9, Step 5, Fig. 1.

MEDICAL UNIVERSITY

OF VIENNA

Risk management activities usually undertaken by interdisciplinary teams:

- e.g., quality unit,
- business development,
- engineering,
- regulatory affairs,
- production operations,
- sales and marketing,
- legal, statistics and clinical

Risk assessment is only the 1st step. Further steps are:

- Risk reduction
- Risk acceptance
- Risk communication
- Risk review(s)

Risk assessment – focus on dissolution

07_The_Case_Study.ppt, Slide 45

Initial Quality Risk Assessment

- Impact of formulation and process unit operations on Tablet CQAs assessed using prior knowledge
 - Also consider the impact of excipient characteristics on the CQAs

	Drug substance particle size	Moisture content in manufacture	Blending	Lubrication	Compression	Coating	Packaging
<i>in vivo</i> performance			F		7		
Dissolution \rightarrow			\rightarrow				
Assay		-			4		
Degradation							
Content uniformity							
Appearance							
Friability							
Stability-chemical							
Stability-physical							
	- Low risk - Medium risk - High risk						

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Risk Assessment

07_The_Case_Study.ppt, Slide 21

Risk Assessment (FMEA): Purity Control

What is the **Impact** that ------ will have on purity? 1) minimal 5) moderate 9) significant What is the **Probability** that variations in ------- will occur? 1) unlikely 5) moderately likely 9) highly likely What is our **Ability to Detect** a meaningful variation in ------- at a meaningful control point? 1) certain 5) moderate 9) unlikely

	Parameter		13		RPN	Comments
Distillative Solvent Switch	Temperature / Time, etc.	1	5	1	5	Distillation performed under vacuum, at low temperature, minimizing risk of hydrolysis
Distillative Solvent Switch / Crystallization	Water content at end of Distillation (Crystallization Feed)	9	5	1	45	Higher water = higher degradation In process control assay should ensure detection and
Crystallization API Feed Solution	Feed Temperature	9	5	1	45	Higher temperature = higher degradation Temperature alarms should enable quick detection and control
Crystallization API Feed Solution	Addition Time	9	1	5	45	Longer time = higher degradation Detection of prolonged addition time may occur too late to prevent some degradation
Crystallization	Seed wt percentage	1	1	1	1	This parameters cannot impact impurity rejection, since no rejection of hydrolysis degradate occurs.
Crystallization	Antisolvent percentage (charge ratio)	1	1	1	1	This parameters cannot impact impurity rejection, since no rejection of hydrolysis degradate occurs.
Crystallization	Crystallization temperature	1	5	1	5	Temperature is low enough that no degradation will occur.
Crystallization	Other crystallization parameters	1	1	1	1	These parameters cannot impact impurity rejection, since no rejection of hydrolysis degradate occurs.

Risk Assessment

07_The_Case_Study.ppt, Slide 27

Risk Assessment:

Particle Size Distribution (PSD) Control

what is the **impact** that ------ will have on PSD (1) minimal b) moderate 9) significant

What is the **Probability** that variations in ------- will occur? 1) unlikely 5) moderately likely 9) highly likely

What is our Ability to Detect a meaningful variation in				me	aningt	ul control point? 1) certain 5) moderate 9) unlikely
Unit Operation	Parameter	/4	P 4CY		RPN	Comments
Crystallization	Feed Temperature	1	5	1	5	Prior knowledge (slowness of crystallization kinetics) ensures that the hot crystallizer feed will be well dispersed and thermally equilibrated before crystallizing. Hence no impact of feed temp variation on crystal size.
Crystallization	Water content of Feed	1	5	5	25	Prior knowledge (solubility data) shows that small variations in water do not affect crystalliation kinetics.
Crystallization	Addition Time (Feed Rate)	9	5	9	405	Fast addition could result in uncontrolled crystallization. Detection of short addition time could occur too late to prevent this uncontrolled crystallization, and thus impact final PSD.
Crystallization	Seed wt percentage	9	5	5	225	Prior knowledge (Chemical Engineering theory) highlights seed wt percentage variations as a potential source of final PSD variation
Crystallization	Antisolvent percentage	1	1	1	1	Yield loss to crystallization already low (< 5%), so reasonable variations in antisolvent percentage (+/- 10%) will not affect the percent of batch crystallized, and will not affect PSD
Crystallization	Temperature	9	5	9	405	Change in crystallization temperature is easily detected, but rated high since no possible corrective action (such as, if seed has been dissolved)
Crystallization	Agitation (tip speed)	9	5	5	225	Prior knowledge indicates that final PSD highly sensitive to agitation during crystallization, thus requiring further study.
Crystallization	Seed particle size distribution	9	1	1	9	Seed PSD controlled by release assay performed after air attrition milling.
Crystallization	Feed Concentration	1	1	1	1	Same logic as for antisolvent percentage

Risk Assessment – Fishbone diagram

- (1.) **Identify** variables with potential impact on desired CQAs
- (2.) rank them based on probability, severity & detectability using failure mode effects analysis (FMEA)
- (3.) study higher ranked variables using DoE or other experimental methods

ICH Q8(R2), Appendix 2, A. Use of a risk assessment tool

Interactions between different CPPs

Fig.: Interactions between 3 CPPs of a drying operation of a granulate on degradation product Y.

Interactions between:

• IMC & temperature

NO interaction between:

- IMC & mean particle sice
- Temperature & mean particle size

ICH Q8(R2), Appendix 2, B. Depiction of interactions

Risk Assessment

07_The_Case_Study.ppt, Slide 64

"...the level of risk can change as a result of risk management." (Q8/Q9/Q10 Q&As (R4) Points to Consider)

Quality by Design (QbD) / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Design of Experiments (DoE)

Definition

Formal Experimental Design:

A structured, organized <u>method for determining the</u> <u>relationship between factors</u> affecting a process and the output of that process. Also known as "Design of Experiments".

ICH Q8(R2), part I, Glossary

DoE – experimental setup

07_The_Case_Study.ppt, Slide 48

Developing Product and Process Understanding: DOE Investigation of factors affecting Dissolution

Multifactorial DOE study of variables affecting dissolution

- Factors:
 - API particle size [API] unit: log D90, microns
 - Mg-Stearate Specific Surface Area [MgSt] unit: cm²/g
 - Lubrication time [LubT] unit: min
 - Tablet hardness [Hard] unit: N
- Response:
 - % API dissolved at 20 min [Diss]
- DOE design:
 - RSM design
 - Reduced CCF (quadratic model)
 - 20+3 center point runs

Exp No	Run Order	API	MgSt	LubT	Hard	Diss
1	1	0.5	3000	1	60	101.24
2	14	1.5	3000	1	60	87.99
3	22	0.5	12000	1	60	99.13
4	8	1.5	3000	10	60	86.03
5	18	0.5	12000	10	60	94.73
6	9	1.5	12000	10	60	83.04
7	15	0.5	3000	1	110	98.07
8	2	0.5	12000	1	110	97.68
9	6	1.5	12000	1	110	85.47
10	16	0.5	3000	10	110	95.81
11	20	1.5	3000	10	110	84.38
12	3	1.5	12000	10	110	81
13	10	0.5	7500	5.5	85	96.85
14	17	1.5	7500	5.5	85	85.13
15	19	1	3000	5.5	85	91.87
16	21	1	12000	5.5	85	90.72
17	7	1	7500	1	85	91.95
18	4	1	7500	10	85	88.9
19	5	1	7500	5.5	60	92.37
20	11	1	7500	5.5	110	90.95
21	12	1	7500	5.5	85	91.95
22	13	1	7500	5.5	85	90.86
23	23	1	7500	5.5	85	89

Note: A screening DoE may be used first to identify which of the many variables have the greatest effect

Design Space

Definition

Design Space:

The multidimensional combination and interaction of <u>input</u> <u>variables (e.g., material attributes)</u> and <u>process parameters</u> that have been demonstrated to provide assurance of quality.

Working within the design space is not considered as a change. Movement out of the design space is considered to be a change and would normally initiate a regulatory post approval change process. Design space is proposed by the applicant and is subject to regulatory assessment and approval (ICH Q8).

ICH Q8(R2), part II, Glossary

Parameters 1&2: factors of a granulation operation that affect the dissolution rate of a tablet – e.g.: excipient attribute, water amount, granule size

Dissolution > 80% is desired.

Surface plot

Contour plot

ICH Q8(R2), Appendix 2, Example 1, Figures 1a & 1b

Quality by Design / Helmut Hofbauer Applied Immunology Lab / ARGE Ankersmit

Fig 1c & 1d: Two design spaces for two granulation parameters delivering satisfactory dissolution (>80%)

ICH Q8(R2), Appendix 2, Example 1, Figures 1c & 1d

Fig 2a & 2b: Design space determined from the combination of two CQAs: dissolution + friability;

Parameter 1 and 2 in Fig. 2a & 2b are the same parameters, e.g. water amount & granule size

Fig 2a: Contour plot: dissolution as a function of parameters 1 & 2

Fig. 2b: Contour plot: friability as a function of parameters 1 & 2

ICH Q8(R2), Appendix 2, Example 1, Figures 2a & 2b

Fig. 2c: Design space comprised of the overlap region of ranges for friability & dissolution.

ICH Q8(R2), Appendix 2, Example 1, Figure 2c

Control Strategy

Definition

Control Strategy:

A <u>planned set of controls</u>, derived <u>from current product and</u> <u>process understanding</u> that <u>ensures process performance and</u> <u>product quality</u>.

The controls can include parameters and attributes related to <u>drug substance and drug product materials</u> and components, <u>facility and equipment operating conditions</u>, <u>in-process</u> <u>controls</u>, <u>finished product specifications</u>, and the associated methods and <u>frequency of monitoring</u> and control. (ICH Q10) ICH Q8(R2), part II, Glossary

Control Strategy

Ich presentation: Breakout B Control Strategy

Continual improvement – the FDA takes it seriously

<u>https://www.qualitydigest.com/inside/twitter-ed/taking-holistic-approach-quality-design.html</u> (Die Grafik stammt ursprünglich von der FDA, kommt zB. Vor in der Präsentation von Christine M. V. Moore, Texas 2012.)

QbD – not mandatory, just opportunities

Part II: Pharmaceutical development - Annex

1. Introduction

This guideline is an annex to ICH Q8 Pharmaceutical Development and provides further clarification of key concepts outlined in the core guideline. In addition, this annex describes the principles of quality by design1 (QbD). The annex is not intended to establish new standards or to introduce new regulatory requirements; however, it shows how concepts and tools (e.g., design space1) outlined in the parent Q8 document could be put into practice by the applicant for all dosage forms. Where a company chooses to apply quality by design and quality risk management (ICH Q9, Quality Risk Management), linked to an appropriate pharmaceutical quality system, opportunities arise to enhance science- and risk-based regulatory approaches (see ICH Q10, Pharmaceutical Quality System).

ICH Q8(R2)

Is QdB mandatory in the US?

"The current regulatory trend for required QbD elements in submissions will soon make a mandate a reality. In the broader pharmaceutical realm, as of <u>2013, the QbD framework for generic drug development is</u> <u>mandatory</u>. For instance, according to FDA internal policy, MAPP 5016.1 (which became effective February 2011) (16), FDA CMC reviewers are instructed to review submissions for the following ICH Q8, Q9, and Q10 elements:

- quality target product profile (QTPP)
- critical quality attributes (CQAs) of a product
- product design and product understanding
- process design and understanding
- product and process control strategies."

Michael Torres: "Challenges in Implementing Quality By Design: An Industry Perspective" (16 June 2015) <u>https://bioprocessintl.com/analytical/downstream-development/challenges-in-implementing-quality-by-design-an-industry-perspective/</u>

Implementation of Quality by Design (QbD) Principles in Regulatory Dossiers of Medicinal Products in the European Union (EU) Between 2014 and 2019

Judith P. ter Horst¹ · Sada L. Turimella¹ · Frans Metsers¹ · Alex Zwiers¹

Received: 2 September 2020 / Accepted: 17 December 2020 / Published online: 13 January 2021 © The Author(s) 2021

Abstract

Background Quality by Design (QbD) is a systematic risk-based approach to development, with predefined characteristics and quality risk management throughout the life cycle of a product. International Conference on Harmonization (ICH) guidelines Q8–Q11 give guidance on QbD applications with ICH Q8 (R2)—approved in 2009—describing the principles of QbD in detail. Since its adoption over 10 years ago, more information about QbD usage for the development of medicinal products is expected to be written in regulatory dossiers by companies.

Methods The present study set out to evaluate the implementation of QbD principles and elements in all EU approved marketing applications (MA) (n = 494), based on information available in the European Public Assessment Reports (EPARs), for a period of six years (2014–2019), starting 5 years after QbD adoption.

Results Of the 494 MAs, 271 were submitted with a full dossier (article 8(3)). According to EMA (38%), out of the 271 full dossier submissions, only 104 were developed using full QbD. This figure did not increase during this period. Interestingly, between 2014 and 2019, several MAs were not developed via full QbD implementation but used one or more QbD elements during development, including design space. In addition, a higher percentage of small molecule products were developed with QbD as opposed to biotechnology-derived products (78% vs. 22%, respectively).

Conclusion Overall, QbD during development of medicinal products is still not commonly described in dossiers. However, more companies started mentioning QbD elements, thus making it a promising step toward QbD as the standard for development in the future.

Presentation title / topic OR Presenter's name Organisational unit

QbD process steps

QTPP characteristics	QTPP requirements	CQAs:
Dosage form & strength	Immediate release tablet, 30 mg of active ingredient	• Assay
Specifications for safety & efficacy	Assay, content uniformity and dissolution	Content Uniformity Dissolution
Description & hardness	Robust tablet able to withstand transport & handling	Tablet Mechanical
		Strength

Control strategy

