Fibrosis — A Common Pathway to Organ Injury and Failure

Don C. Rockey, M.D., P. Darwin Bell, Ph.D., and Joseph A. Hill, M.D., Ph.D.

Journalclub am 21.11.2022

Anna Rath

Background

- New England Journal of Medicine
- Published 19.03.2015
- Authors:
 - Don C. Rockey, M.D.,
 - P. Darwin Bell, Ph.D.
 - Joseph A. Hill, M.D., Ph.D.

Fibrosis I

- One third of deaths worldwide
- High morbidity and mortality
- Almost all organ systems:
 - Eyes
 - Skin
 - Lung
 - Heart
 - Pancreas
 - Liver
 - Kidney
- Causes physical organ deformation, which impairs organ function

Fibrosis II

- Not irreversible "scar"
- Highly plastic nature and dynamic process
- Degree of plasticity appears to vary
- Injury-> Complex cellular and molecular response
 - Short term: adaptive features
 - Long term: -> parenchymal scarring -> cellular dysfunction
 -> organ failure

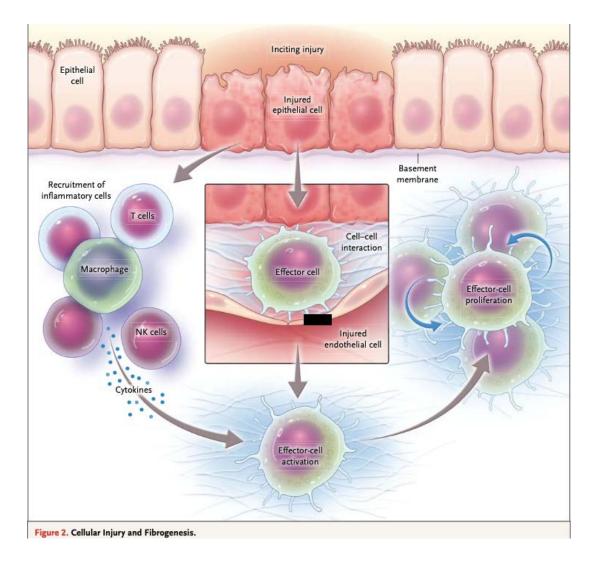
Pathogenesis

Pathogenesis I

- Diverse diseases in different organ systems associated with fibrosis
 -> Common pathogenic pathways
- Interplay between factors that promote the biosynthesis, deposition and degradation of extracellular matrix proteins
- Triggered by acute and chronic inflammation
 - Injury stops: Resorption of extracellular matrix proteins-> promoting organ repair
 - Injury persists: Unremitting activation of effector cells -> continuous deposition of extracellular matrix -> progressive scarring & organ damage

Pathogenesis II

- The matrix proteins that compose the fibrotic scar, consists of:
 - Interstitial collagen (types I and III)
 - Cellular fibronectin
 - Basement-membrane proteins (e.g. Laminin)
- Fibroblasts and myofibroblasts:
 - Key fibrosis effectors
 - Responsible for synthesis of extracellular matrix proteins


Pathogenesis III

- Four phases:
 - Phase 1: Initiation of response
 - Phase 2: Activation of effector cells
 - Phase 3: Growth of extracellular matrix
 - Phase 4: Dynamic deposition of extracellular matrix

-> Progression to fibrosis & organ failure

Cellular level I

Cellular level II

- Inflammation -> Injury of resident epithelial cells and endothelial cells -> enhanced release of inflammatory mediators
- -> Recruitment of a wide range of inflammatory cells
- -> Inflammatory cells elicit the activation and proliferation of effector cells
- -> Fibrosis progresses

Fibrogenic effector cells

- Fibroblasts, fibrocytes, tissue-specific pericytes, myofibroblasts
- Mesenchymal origin
- Derived through epithelial-to-mesenchymal transition
- Autocrine loops
- Cell-cell interactions lead to further activation of effector cells
- Produce:
 - Extracellular matrix proteins
 - Peptides
 - Cytokines
 - Growth factors

Myofibroblasts

- Produce large amounts of extracellular matrix
- Derived from fibroblasts or from other mesenchymal cells
- Express smooth-muscle proteins
- Contractable
- -> Contractile mediators trigger pathological tissue contraction
- -> Distortion of parenchymal architecture -> promotes disease pathogenesis and tissue failure

Macrophages

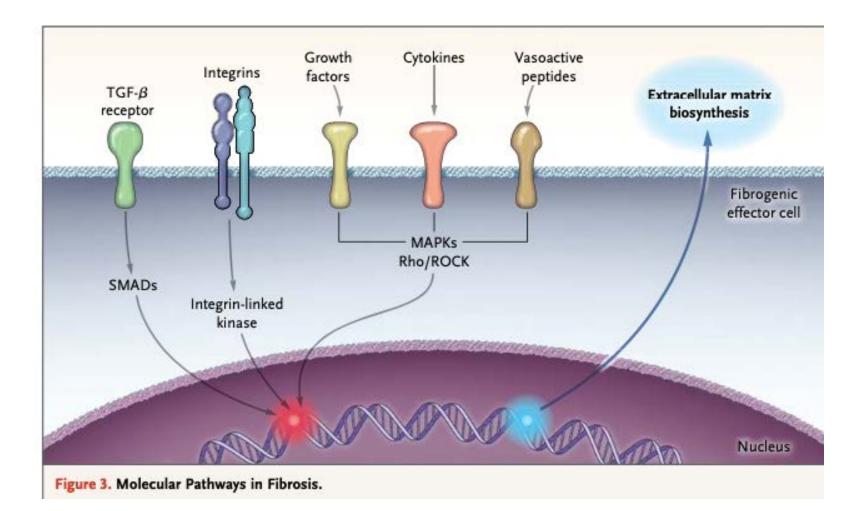
- Prominent role in interstitial fibrosis
- Often driven by the TGF-β pathway
- Can be protective
- Certain populations phagocytose apoptotic cells that promote the fibrogenic process and activate matrixdegrading metalloproteases

Extracellular matrix

- Cascades triggered by exposure of effector cells to molecules that stimulate the biosynthesis and secretion of extracellular matrix proteins
- Modify the wound milieu
- Stimulates fibrogenic effector cells in an autocrine fashion
- Stimulates fibrogenesis through activation of integrins
- Matrix synthesis counterbalanced by matrix-degrading metalloproteases

Molecular pathway I

- Wide-ranging and complex:
 - Platelet-derived growth factor (PDGF)
 - Connective-tissue growth factor (CTGF)
 - Vasoactive peptide systems (angiotensin II, endothelin-1)
 - Angiogenic pathways
 - Integrins
 - Endothelin
 - Transforming growth factor beta (TGF-β)



Molecular pathway II

- TGF-β cascade
 - Major role
 - Involves multiple signaling cascades
 - Potent stimulator of the synthesis of extracellular matrix proteins
 - Synthesized and secreted by inflammatory cells and effector cells
 - Autocrine and paracrine function

Molecular pathway

Genetics

- Kidney: Mutations in FAN1 -> Karyomegalic interstitial nephritis
- Liver: Mutation in PNLAP3 -> Fibrosis mediated by ethanol / associated with fatty liver disease
- Lung: Mutations in *TERT* and *MUC5B*
- Number of genes are important for fibrosis mediated by HCV infection
- Epigenetic regulation:
 - Fibroblasts from patients with IPF have changes in DNA methylation
 - Regulatory noncoding RNAs also involved

Mechanisms and Adverse Clinical Effects

Cardiac fibrosis I

- Extensive structural and functional remodeling after injury
- Hypertrophy of cardiac myocytes, with excessive deposition of extracellular matrix
- Myocardial fibrosis
 - Reactive fibrosis : in perivascular spaces and corresponds to similar fibrogenic responses in other tissues
 - Replacement fibrosis: occurs at the site of myocyte loss
- Attributed to cardiac fibroblasts
 - Proliferate and differentiate into myofibroblasts after injury
 - Driven by classic factors such as TGF- β , endothelin-1, and angiotensin II

Cardiac fibrosis II

- -> Proarrhythmic effects
- -> Systolic and diastolic dysfunction
- Collagenous septa in heart -> discontinuous slowing of conduction
- Increased incidence of sudden cardiac death
- 3% increase in the extracellular volume fraction of fibrous tissue, associated with a 50% increase in the risk of adverse cardiac events

Hepatic fibrosis

- Variety of effectors synthesize extracellular matrix especially hepatic stellate cells
- Hepatic stellate cells
 - Pericyte like
 - Undergo transformation into myofibroblasts after injury
- Pathway unique to the liver: Toll-like receptor 4 (TLR4)
 - Activated on the surface of stellate cells by intestinal bacterial lipopolysaccharides from the gut
 - -> Triggering cell activation and fibrogenesis
 - -> Linking fibrosis to the microbiome
 - TLR4 expression associated with portal inflammation and fibrosis
- End result: cirrhosis
 - -> Portal hypertension
 - -> Wide range of devastating complications with adverse effects on survival

Renal fibrosis

- Hypertension and diabetes are leading causes of renal fibrosis
 - High glomerular capillary pressure -> proteinuria -> activation of cytokines and complement -> infiltration of immune cells -> fibrosis -> diminishes renal blood flow -> hypoxia & activation of hypoxia-inducible factor 1 -> triggers nephron collapse and fibrotic replacement
- Renin-angiotensin-aldosterone axis important
- Location of initial injury decisive of clinical consequences
 - ->Loss of function and organ failure
 - -> Anemia
 - -> Regulation of electrolyte balance and pH is disrupted

Pulmonary fibrosis I

- Less dynamic than other fibrosis
- Wide range of diseases: idiopathic, scleroderma, sarcoidosis, infection, result of environmental exposures
- Injury to alveolar epithelial cells activates pulmonary fibroblasts, provoking their transformation to matrix-producing myofibroblasts
- Activated lung fibroblasts may cause apoptosis of alveolar cells -> further fibroblast activation
- Research focused on TGF-β signaling and interstitial pericytes

Pulmonary fibrosis II

- Parenchymal honeycombing
- Reduced lung compliance
- Restrictive lung function
- Hindered gas exchange -> abnormal oxygenation and clinical dyspnea
- Progressive pulmonary fibrosis -> pulmonary hypertension, rightsided heart failure, respiratory failure
- Idiopathic pulmonary fibrosis (IPF): progressive fibrosis without substantial inflammation, unlike other fibrosing diseases, poorly understood

Other fibrosis

- Retroperitoneum:
 - Rare
 - Inflammation and fibrosis of retroperitoneum
 - Mostly idiopathic, or drugs, infections, autoimmune and inflammatory stimuli, and radiation
- Skin: scleroderma
 - Skin fibroblasts and myofibroblasts are activated through the TGF- $\beta-$ SMAD signaling pathway
- Nephrogenic systemic fibrosis:
 - Widespread organ fibrosis
 - In patients with renal insufficiency with exposure to gadoliniumbased contrast material
 - Prevention

Therapies I

- Elimination of the stimulus is the first and most efficacious approach
- Promising preclinical studies BUT not confirmed in clinical trails
- Specific therapies are limited
- Not clear what pathogenic or clinical factors promote reversibility
- Regression leads to improved clinical outcomes
- Progression slowly, therapy may be required for extended periods
- Slowing the progression more realistic therapeutic goal than eliminating it

Therapies II

- The best indication for reversibility: in HBV positive patients with cirrhosis with antiviral therapy
 - Reduction of fibrosis
 - Reversion of cirrhosis
 - Reduction of incidence of clinical complications
- Reversion by elimination of effector cells and shifts in the balance of matrix synthesis and degradation
- Specific targets for hepatic and pulmonary fibrosis

Therapies for cardiac fibrosis I

- Therapies with secondary effects on fibrosis
 - ACE inhibitors
 - Statins
 - Aldosterone antagonists
 - Histone deacetylase inhibitors
- -> Reduction of ventricular arrhythmia
- Slow rate of ventricular tachycardias
- Reduce incidence of sudden cardiac death

Therapies for cardiac fibrosis II

- Promising ideas is based on premise that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells
 - -> Would promote normal tissue regeneration
 - Shown in murine model:
 - -> Improvements in contractile function

Therapies for renal fibrosis

- Therapies typically target underlying disease processes
- ACE inhibitors and angiotensin-receptor blockers:
 - Ameliorate renal damage and fibrosis
 - Through multiple pathways (also TGF-β)
- Aldosterone antagonists:
 - Inhibitation or slowing the progression of fibrosis
- New therapies target:
 - Bone morphogenetic protein-7
 - NADPH oxidase (NOX1 and NOX4)
 - SMAD3 and SMAD4 pathways

Therapies for hepatic fibrosis I

- Hepatocytes capable of regeneration
- Especially amenable to therapeutic intervention
- Even cirrhosis can be reversed
 - Eradication of HCV infection
 - Antiviral therapy for HBV infection
 - Glucocorticoid therapy for autoimmune hepatitis
 - Phlebotomy for hemochromatosis
 - Relief of biliary obstruction
 - Stopping of alcohol consumption in alcoholic hepatitis
- -> Clearly reverses fibrotic change
- -> Improve clinical outcome

Therapies for hepatic fibrosis II

- Colchicine:
 - Suppresses collagen secretion
 - Theoretically prevents fibrosis
- Interferon γ -1b and Farglitazar:
 - Inhibit stellate cell-mediated fibrogenesis
 - Studied in HCV patients unresponsive to primary antiviral therapy
 - No beneficial effects on fibrosis
- Polyenephosphatidylcholine, Silymarin, Ursodeoxycholic acid:
 - no benefit
- Vitamin E:
 - modest effects on histologic fibrosis in patients with nonalcoholic steatohepatitis

Therapies for pulmonary fibrosis

- Interferon γ-1b:
 - Efficacy in preclinical studies
 - No benefit in human clinical trials
- Endothelin-receptor antagonists:
 - No benefit
- Pirfenidone:
 - Presumably has effects on TGF-β production
 - Reduced disease progression
 - Increased survival in patients with idiopathic pulmonary fibrosis
 - Reduction in forced vital capacity
 - Reduction in mortality
 - Raising the possibility of a reversal in fibrosis
- Nintedanib:
 - Slowed disease progression
- Outcomes based on clinical results

Table 1. Pathways and Processes in Fibrogenesis and Current Treatments.*					
Organ	Pathways and Processes	Diseases	Drugs	Summary of Effectiveness	Source of Data†
Heart	Aldosterone antago- nism, TGF-β antago- nism, RAS inhibition, cGMP inhibition, inhibi- tion of cholesterol syn- thesis, inhibition of Na-K-Cl cotransporter	Heart failure, cardiomyop- athy, hypertrophic cardio- myopathy, cardiomyopa- thy induced by type 2 dia- betes, heart failure or car- diomyopathy induced by hypertension	Spironolactone, epler enone, canrenone, pir- fenidone, sildenafil, statins, ACE inhibitors, ARBs, torsemide, MRAs	ACE inhibitors, ARBs, and MRAs are associated with decreased fibrosis on MRI and decreased arrhythmo- genesis (the latter sug- gests effects of drugs on fibrosis)	Kosmala et al., ⁶⁷ Gi- annetta et al., ⁶⁹ Anto- nopoulos et al., ⁶⁹ Roubille et al., ⁷⁰ TORAFIC Investiga- tors Group ⁷¹
Liver	RAS inhibition, inhibi- tion of collagen synthe- sis, inhibition of effector- cell fibrogenesis, inhibi- tion of oxidative stress, signaling of PPAR γ-agonists	Many diseases of the liver	ACE inhibitors, ARBs, colchicine, interferon γ-1b, vitamin E, piogli- tazone, farglitazar	Specific antifibrotic agents listed have generally been ineffective in halting or reversing fibrosis	Sanyal et al., ⁷² Kim et al., ⁷³ Kershenobich et al., ⁷⁴ Morgan et al., ⁷⁵ Muir et al., ⁷⁶ Pockros et al., ⁷⁷ McHutchison et al. ⁷⁸
Kidney	RAS inhibition, aldoste- rone antagonism, TGF-β antagonism, Nrf2 pathway	Primarily renal diseases related to hypertension or diabetes	ACE inhibitors, ARBs, spironolactone, pirfeni- done, bardoxolone	ACE inhibitors and ARBs are moderately effective in slowing progression of di- abetic nephropathy (indi- rectly suggesting effects on fibrosis)	Lambers Heerspink et al., ⁷⁹ Ruggenenti et al., ⁸⁰ Bonventre, ⁸¹ Guney et al., ⁸² Shar- ma et al., ⁸³ de Zeeuw et al. ⁸⁴
Lung	TGF-β antagonism, di- rect inhibition of effec- tor-cell fibrogenesis, multikinase inhibition, inhibition of oxidative stress	Primarily idiopathic pul- monary fibrosis	Pirfenidone, interferon γ-1b, bosentan, ambris- entan, macitentan, nint- edanib, acetylcysteine	Pirfenidone and ninte- danib led to improve- ments in clinical out- comes	Raghu et al., ⁸⁵⁻⁸⁷ King et al., ⁸⁸ Richeldi et al., ⁸⁹ Martinez et al. ⁹⁰
Skin	Endothelin-receptor an- tagonism, multikinase inhibition	Scleroderma, nephrogenic systemic fibrosis	Bosentan, imatinib mesylate	Small studies show mod- est effects	Kuhn et al., ⁹¹ Kay and High ⁹²

* ACE denotes angiotensin-converting enzyme, ARB angiotensin-receptor blocker, cGMP cyclic guanosine monophosphate, MRA mineralocorticoid-receptor antagonist, MRI magnetic resonance imaging, Nrf2 nuclear factor erythroid 2-related factor, PPAR peroxisome proliferatoractivated receptor, RAS renin-angiotensin system, and TGF-β transforming growth factor beta.

† Detailed information about specific trials is provided in Table S1 in the Supplementary Appendix.

Conclusion

Conclusion

- Great interest in slowing, arresting, or reversing the progression of fibrogenesis
- Need for a deeper comprehension of the pathogenesis
- Therapies targeting fibrogenesis specifically are missing

Thank you for your attention!

